Высоких напряжений техника - ορισμός. Τι είναι το Высоких напряжений техника
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι Высоких напряжений техника - ορισμός

СОВЕТСКИЙ ФУТБОЛИСТ
Высоких; Никита Высоких; Никита Александрович Высоких; Высоких Никита Александрович

Высоких напряжений техника      

раздел электротехники (См. Электротехника), охватывающий изучение и применение электрических явлений, протекающих в различных средах при высоких напряжениях. Высоким считается напряжение 250 в и выше относительно земли. Экономически целесообразно строить мощные электрические станции вблизи мест добычи топлива или на больших реках и получаемую электрическую энергию передавать (например, по проводам) в промышленные районы, иногда значительно удалённые от основных источников энергии. Передача больших электрических мощностей на далёкие расстояния при низком напряжении из-за потерь практически невозможна, поэтому с развитием электрификации растут и рабочие (номинальные) напряжения электрических сетей. В СССР особенно быстро номинальные напряжения росли в период осуществления ГОЭЛРО и в середине 50-х гг. (рис. 1), при создании Единой высоковольтной сети (ЕВС) Европейской части страны.

В развитии В. н. т. большую роль сыграли русские и советские учёные. В России первая лаборатория высокого напряжения была создана профессором М. А. Шателеном при Петербургском политехническом институте в 1911. В Советском Союзе работают десятки крупных лабораторий при научно-исследовательских институтах, заводах и вузах, изучающих проблемы В. н. т. Большие работы в этой области проведены Б. И. Угримовым, А. А. Смуровым, А. А. Горевым, А. А. Чернышёвым, Л. И. Сиротинским, В. М. Хрущовым и руководимыми ими научными коллективами, а также научной школой, возглавлявшейся академиком А. Ф. Иоффе. Издано большое количество монографий и учебников по В. н. т.

Основной проблемой В. н. т. является создание надёжной высоковольтной изоляции, которая имела бы минимальные конструктивные размеры и малую стоимость. Каждая изоляционная конструкция обладает определёнными длительной и кратковременной электрическими прочностями, значения которых определяют габариты и стоимость изоляции (см. Изоляция электрическая). Кратковременная электрическая прочность изоляции характеризует её способность выдерживать кратковременные повышения напряжения (перенапряжения), возникающие в электрических системах при различных переходных процессах (например, при включении или отключении отдельных элементов системы, при коротких замыканиях и т.д.) либо при ударах молнии в линии электропередачи или другие токоведущие части. Перенапряжения первого вида называются внутренними и обычно продолжаются сотые доли сек. Перенапряжения второго вида называются грозовыми, их длительность не превышает десятитысячных долей сек.

Наиболее распространённым диэлектриком (См. Диэлектрики) в электрических системах служит обычный воздух, окружающий провода линий электропередачи и другие элементы внешней изоляции электрических систем (например, опорные, проходные и подвесные изоляторы). Удельная электрическая прочность воздуха (отношение пробивного напряжения к расстоянию между электродами) резко падает с увеличением расстояния между электродами (рис. 2), поэтому габариты линий электропередачи должны расти быстрее, чем растёт номинальное напряжение. Это обстоятельство может положить предел увеличению рабочих напряжений воздушных линий электропередачи, который, по-видимому, составит около 1500 кв по отношению к земле (это соответствует номинальному напряжению 2000 кв для трёхфазных линий переменного тока и 3000 кв для линий постоянного тока). При таком напряжении по каждой линии можно передать электрическую мощность нескольких Гвт на расстояние порядка 1000 км и более. Дальнейшее повышение передаваемой мощности будет, по-видимому, достигнуто путём применения линий электропередачи нового типа, среди которых наиболее перспективны газонаполненные кабели (См. Газонаполненный кабель), сверхпроводящие, или криогенные, кабельные линии, а также передача электрической энергии по волноводам при частотах порядка десятков Ггц.

Электрическая прочность воздуха сильно зависит от продолжительности воздействия только при малых отрезках времени (меньше 100 мксек), поэтому она приблизительно одинакова при грозовых и внутренних перенапряжениях. Это положение справедливо для сухих и чистых изоляторов, находящихся в воздушной среде. Если же поверхность изоляторов загрязнена и увлажнена дождём или туманом, то электрическая прочность изолятора снижается и зависит от длительности воздействия напряжения. Поэтому воздушные промежутки на линиях электропередачи (например, расстояние между проводом и землёй или элементами опоры) определяются только перенапряжениями, а количество и тип изоляторов, на которых подвешиваются провода, - также и рабочим напряжением. Величина перенапряжений, степень загрязнения изоляторов, сила ветра, который отклоняет провода от нормального положения и приближает их к опоре, меняются в широких пределах. Поэтому выбор изоляции для линий электропередачи осуществляется с применением методов математической статистики.

Внутреннюю изоляцию электрических машин и аппаратов (например, изоляцию обмоток трансформатора относительно заземлённого сердечника или корпуса) обычно изготовляют с применением комбинации различных изоляционных материалов. Наиболее распространено сочетание изоляционного минерального масла и изделий из целлюлозы (бумага, электрокартон, прессшпан, бакелит и др.). При конструировании изоляторов принимают меры для выравнивания электрического поля путём, например, применения электродов закруглённой формы, использования различия в величинах диэлектрической проницаемости изоляционных материалов, принудительного распределения напряжения по объёму изоляции. Кратковременная удельная электрическая прочность внутренней изоляции, так же как и воздуха, уменьшается при увеличении расстояния между электродами, поэтому обычно выгодно разбивать изоляцию на ряд последовательно соединённых относительно тонких слоёв. Длительная электрическая прочность внутренней изоляции определяет срок её службы при нормальных эксплуатационных условиях. Основными факторами, приводящими к постепенному ухудшению первоначальных свойств изоляции, являются механические воздействия (например, вследствие электродинамических усилий между токоведущими частями при коротких замыканиях), повышение температуры, увлажнение и загрязнение, воздействие перенапряжений. Особое место занимают частичные разряды в образующихся в толще изоляции газовых включениях, которые могут оказаться одной из основных причин старения изоляции. Под нормальными эксплуатационными условиями понимается ограничение перечисленных выше факторов до определённого уровня, обеспечивающего расчётный срок службы изоляции. Для увеличения срока службы изоляции большое значение имеет система профилактических испытаний изоляции, во время которых путём измерения ряда характерных величин (сопротивление утечки, тангенс угла диэлектрических потерь, ёмкость при двух частотах или при двух температурах, интенсивность частичных разрядов и др.) можно оценить состояние изоляции и своевременно определять сроки и характер необходимого ремонта. В систему профилактических испытаний входит также испытание повышенным напряжением, обязательное после возвращения изоляции из ремонта.

Необходимые габариты внутренней изоляции определяются уровнем воздействующих на неё грозовых и внутренних перенапряжений, т. е. её кратковременной электрической прочностью, которая для установок с номинальным напряжением 220-500 кв приблизительно в 2,5-3 раза превышает максимальное рабочее напряжение. Так как перенапряжения могут иметь и большую кратность, одна из основных задач В. н. т. - исследование перенапряжений и ограничение их амплитуды, обычно достигаемое применением грозовых и коммутационных вентильных разрядников в сочетании с другими мероприятиями. В системах сверхвысокого напряжения (1200 кв и выше) перенапряжения будут ограничивать до значений, в 1,5-1,8 раза превышающих номинальное напряжение. При этом на габариты изоляции основное влияние будет оказывать её длительная прочность, т. е. постепенное старение изоляции под действием рабочего напряжения и перечисленных выше внешних воздействий. В этой связи большой интерес представляет возможность применения в качестве внутренней изоляции сжатого газа, обладающего минимальными диэлектрическими потерями и в значительно меньшей степени подверженного старению. Наиболее перспективными изоляционными газами считаются элегаз (шестифтористая сера Sf6) и фреон (дихлордифторметан CCI2F2), электрическая прочность которых приблизительно в 2,5 раза больше, чем у воздуха. При давлении в несколько десятых Мн/м2 (1 Мн/м2 = 10 кгс/см2) кратковременная электрическая прочность фреона и элегаза не ниже, чем у таких традиционных диэлектриков, как фарфор и трансформаторное масло (рис. 3). Созданы распределительные устройства напряжением до 220 кв, в которых всё оборудование работает в атмосфере элегаза при давлении 0,3-0,4 Мн/м2.

Такие устройства очень хорошо сочетаются с газонаполненными кабельными линиями, применение их перспективно, особенно в густонаселённых районах.

Другая важнейшая проблема В. н. т. - исследование коронного разряда на проводах воздушных линий электропередачи, который сопровождается потерями энергии и высокочастотным излучением, создающим помехи радиоприёму вблизи линии. Так как интенсивность коронного разряда определяется величиной напряжённости электрического поля на поверхности проводов, потери на корону и радиопомехи уменьшаются при увеличении диаметра провода. С этой же целью часто применяют вместо одиночных так называемые расщеплённые провода. На линиях с напряжением от 330 до 750 кв применяют расщеплённые провода, состоящие соответственно из 2, 3 и 4 отдельных проводников, находящихся друг от друга на расстоянии до 50 см. На линиях 1100-1200 кв переменного тока, по-видимому, будут применять расщеплённые провода, состоящие из 6 или 8 отдельных проводников, разнесённых на значительное расстояние для уменьшения волнового сопротивления линии и увеличения её пропускной способности.

При постоянном токе Потери на корону и уровень радиопомех существенно ниже, чем при переменном, и в этом заключается одно из преимуществ линий передачи постоянного тока. Однако основное их преимущество - в возможности связи несинхронно работающих электрических систем, благодаря чему отпадает проблема устойчивости; дальность передачи электроэнергии при постоянном напряжении ограничивается только экономическими соображениями. Поэтому первая в Советском Союзе сверхдальняя линия электропередачи Экибастуз - Центр проектируется на постоянном токе напряжением 1500 кв (±750 кв относительно земли). Главная трудность освоения электропередачи постоянного тока связана с созданием выпрямителей и инверторов, при изготовлении которых применяют мощные управляемые полупроводниковые приборы или дуговые вентили. В перспективе линии постоянного тока создадут основной костяк Единой высоковольтной сети СССР.

Важным разделом В. н. т. является разработка установок высокого напряжения, предназначенных для испытания изоляции и для других целей. В качестве источника переменного напряжения промышленной частоты (50 гц) служат испытательные трансформаторы, часто соединяемые в каскады. Каскадные трансформаторы изготовляют на напряжение до 3000 кв. Высокое постоянное напряжение (до 6000 кв) получают с помощью электростатистических генераторов (См. Электростатический генератор) или последовательно соединённых выпрямителей, для которых обычно применяют высоковольтные полупроводниковые диоды. Для имитации грозовых перенапряжений разработаны генераторы импульсных напряжений (ГИН), генерирующие импульсные напряжения с амплитудой до 10 Мв. В 60-е гг. широкое распространение получили также генераторы волн внутренних перенапряжений (ГВП), которые дают импульс напряжения длительностью до 0,01 сек. Генераторы импульсных токов (ГИТ) при умеренном напряжении (до 200 кв) и амплитуде импульсов тока до нескольких миллионов ампер вначале применялись для испытания заземлителей и грозозащитных разрядников. В дальнейшем область применения ГИТ (их часто называют ёмкостными накопителями энергии) значительно расширилась: их применяют при магнитно-импульсной обработке металлов, в установках, использующих электрогидравлический эффект, в контурах накачки лазеров, для получения высокотемпературной плазмы и других целей. Разновидность ГИТ (так называемый контур Горева) применяют для испытания выключателей на отключающую способность. Высокие напряжения повышенной частоты получают на ламповых генераторах или трансформаторах Тесла.

Создание испытательных установок высокого напряжения потребовало также разработки специальной измерительной аппаратуры. Простейшим прибором для измерения высоких напряжений служит шаровой Разрядник. Высокие напряжения измеряют также с помощью электростатических и роторных (вращающихся) вольтметров, а импульсные напряжения - электронными осциллографами с делителями напряжения на входе. Большие импульсные токи обычно измеряют электронными осциллографами, на пластины которых подаётся напряжение от шунтов или воздушных трансформаторов (пояс Роговского), включаемых последовательно в цепь тока. При высоковольтных измерениях необходимо считаться с сильными электромагнитными полями, искажающими результаты измерений. Для устранения этих искажений измерительные приборы и подводящие провода тщательно экранируют, применяют заземляющие устройства и другие меры для уменьшения паразитных индуктивностей и ёмкостей. Для измерения напряжений и токов в действующих электрических системах разработаны регистрирующие приборы типа автоматических осциллографов или пиковых вольтметров, массовое использование которых позволяет получить достаточно надёжный статистический материал о перенапряжениях и токах молнии.

Одним из самостоятельных разделов В. н. т. является так называемая электронно-ионная технология, связанная с аэрозолями, частицы которых заряжаются от трения, коронного разряда или другими методами. С помощью сильного электрического поля можно управлять движением заряженных частиц и таким образом осуществлять необходимый технологический процесс (электрогазоочистку, электросмешивание, электросепарирование, электроокраску и др.). Примером использования электронно-ионной технологии могут служить коронные электрофильтры на ТЭС для очистки газа, выходящего из топок паровых котлов, от золы и других взвешенных частиц.

Лит.: Техника высоких напряжений, под ред. Л. И. Сиротинского, ч. 1-3, М. - Л., 1951-59; Разевиг Д. В., Атмосферные перенапряжения на линиях электропередачи, М. - Л., 1959; Высоковольтное испытательное оборудование и измерения, М. - Л., 1960; Бумажномасляная изоляция в высоковольтных конструкциях, М. - Л., 1963; Александров Г. Н., Коронный разряд на линиях электропередачи, М. - Л., 1964; Артемьев Д. Е., Тиходеев Н. Н., Шур С. С., Статистические основы выбора изоляции линий электропередачи высоких классов напряжения, М. - Л., 1965; их же. Координация изоляции линий электропередачи, М. - Л., 1966; Иерусалимов М. Е., Орлов Н. Н., Техника высоких напряжений. К., 1967; Долгинов А. И., Техника высоких напряжений в электроэнергетике, М., 1968; Вайда Д., Исследования повреждений изоляции, М., 1968.

Д. В. Разевиг.

Рис. 1. Графики роста наивысшего номинального напряжения (в кв) электрических сетей СССР: 1 - линии переменного тока; 2 - линии постоянного тока.

Рис. 2. Удельная электрическая прочность (кв/см) промежутка "провод - плоскость" в воздухе при температуре 20°С и давлении 760 мм рт. ст.

Рис. 3. Пробивное напряжение в однородном поле для различных диэлектриков: 1 - фарфор; 2 - трансформаторное масло; 3 - элегаз (0,1 Мн/м2); 4 - элегаз (0,7 Мн/м2).

Тензор напряжений         
ТЕНЗОР ВТОРОГО РАНГА, КОМПОНЕНТЫ КОТОРОГО - МЕХАНИЧЕСКИЕ НАПРЯЖЕНИЯ
Тензор напряжений Коши; Тензор натяжений
Те́нзор напряже́ний (иногда тензор напряжений Коши, тензор натяжений) — тензор второго ранга, описывающий механические напряжения в произвольной точке нагруженного тела, возникающих в этой точке при его (тела) малых деформациях. В случае объёмного тела, тензор часто записывается в виде матрицы 3×3:
Физики высоких энергий институт         
  • Пульт управления ускорителем У-70, 2001 год
ОДИН ИЗ КРУПНЕЙШИХ ФИЗИЧЕСКИХ НАУЧНЫХ ЦЕНТРОВ В РОССИИ
Физики высоких энергий институт; ИФВЭ

Государственного комитета по использованию атомной энергии СССР (ИФВЭ), научно-исследовательское учреждение, в котором ведутся экспериментальные исследования явлений, происходящих при столкновениях частиц высоких энергий, с целью изучения фундаментальных законов взаимодействия элементарных частиц и их структуры. Институт расположен в пос. Протвино Московской обл. (близ г. Серпухов). В институте работают (1976) академик АН СССР А. А. Логунов, члены-корреспонденты АН СССР А. А. Наумов и Ю. Д. Прокошкин.

Исследования ведутся на базе крупнейшего в СССР ускорительного комплекса ИФВЭ. Ускорительный комплекс ИФВЭ включает следующие основные системы: линейный ускоритель - инжектор, ускоряющий протоны до энергии 100 Мэв; сильнофокусирующий протонный синхротрон, ускоряющий протоны до энергии 76 Гэв; системы вывода и каналов частиц, формирующих пучки заряженных частиц и проводящих их к физическим установкам. Сооружение ускорителя было начато в 1961, запуск осуществлен в 1967. Интенсивность пучка ускорителя составляет 5․1013 протонов за цикл (1976), частота повторения - 8 циклов в 1 мин. В настоящее время (1977) ведутся работы по сооружению новой системы инжекции - бустера, которая обеспечит повышение интенсивности до 5․1013 протонов за цикл.

На ускорителе работает большой комплекс каналов различных частиц, в том числе уникальные каналы сепарированных частиц, а также крупные экспериментальные установки: сцинтилляционные, черенковские и полупроводниковые счётчики, искровые и пузырьковые камеры "Людмила" (построена в ОИЯИ), "Мирабель" (построена в Сакле, Франция) и СКАТ (построена в ИФВЭ). На базе нейтринного канала и одной из крупнейших в мире фреоновой камеры СКАТ с рабочим объёмом 6 м3 ведутся нейтринные эксперименты. Для анализа экспериментальной информации применяются автоматические и полуавтоматические устройства и современная вычислительная техника.

В ИФВЭ получен ряд фундаментальных результатов. Впервые предложен и разработан новый подход к изучению процессов множественной генерации частиц (т. н. инклюзивные процессы, см. Сильные взаимодействия). Обнаружена универсальность в поведении сечений инклюзивных процессов, что привело к открытию законов подобия в микромире - "масштабной инвариантности". Изучение инклюзивных процессов стало одним из основных направлений исследований многих лабораторий мира. Экспериментально установлены новые закономерности в поведении полных сечений (серпуховский эффект). Показано, что радиус действия ядерных сил растет с увеличением энергии сталкивающихся частиц. Экспериментальное изучение антивещества привело к открытию ядер антигелия и антитрития. Открыта новая частица h-мезон с массой около 2 Гэв н спином 4.

В исследованиях на ускорителе ИФВЭ участвуют учёные из различных институтов СССР, Объединённого института ядерных исследований (Дубна), Европейского центра ядерных исследований (Женева), лабораторий стран Западной Европы и США.

В. А. Ярба.

Βικιπαίδεια

Высоких, Никита Александрович

Никита Александрович Высоких (19 августа 1954 — 1 июня 2006) — советский футболист, защитник. Мастер спорта СССР международного класса (1976).