Иррациональное число - ορισμός. Τι είναι το Иррациональное число
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι Иррациональное число - ορισμός

Иррациональные числа

ИРРАЦИОНАЛЬНОЕ ЧИСЛО         
число, не являющееся рациональным, т. е. не могущее быть точно выраженным дробью m/n, где m и n - целые числа. Действительные иррациональные числа могут быть представлены бесконечными непериодическими десятичными дробями.
Иррациональное число         

число, не являющееся рациональным (т. е. целым или дробным). Действительные И. ч. могут быть представлены бесконечными непериодическими десятичными дробями; например, Существование иррациональных отношений (например, иррациональность отношения диагонали квадрата к его стороне) было известно ещё в древности. Иррациональность числа π была установлена немецким математиком И. Ламбертом (1766). Однако строгая теория И. ч. была построена только во 2-й половине 19 в. И. ч. разделяются на нерациональные алгебраические числа (См. Алгебраическое число) и трансцендентные числа (См. Трансцендентное число). См. также Число.

Иррациональное число         
Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби \frac{m}{n}, где m,n — целые числа, n \ne 0. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.

Βικιπαίδεια

Иррациональное число

Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби m n {\displaystyle {\frac {m}{n}}} , где m , n {\displaystyle m,n}  — целые числа, n 0 {\displaystyle n\neq 0} . Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.

Другими словами, множество иррациональных чисел есть разность I = R Q {\displaystyle \mathbb {I} =\mathbb {R} \backslash \mathbb {Q} } множеств вещественных и рациональных чисел.

О существовании иррациональных чисел (точнее отрезков, несоизмеримых с отрезком единичной длины), знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа 2 {\displaystyle {\sqrt {2}}} .

Иррациональными являются, среди прочих, отношение длины окружности к диаметру круга (число π), основание натурального логарифма e, золотое сечение φ, квадратный корень из двух. Все квадратные корни натуральных чисел, кроме полных квадратов, иррациональны.

Иррациональные числа также могут рассматриваться через бесконечные непрерывные дроби. Следствием доказательства Кантора является то, что действительные числа не счётны, а рациональные — счётны, отсюда следует, что почти все действительные числа иррациональны.

Τι είναι ИРРАЦИОНАЛЬНОЕ ЧИСЛО - ορισμός