Кротоновая конденсация - ορισμός. Τι είναι το Кротоновая конденсация
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι Кротоновая конденсация - ορισμός

ХИМИЧЕСКАЯ РЕАКЦИЯ
Клайзена конденсация; Конденсация Кляйзена; Сложноэфирная конденсация
  • 850px

Кротоновая конденсация      

взаимодействие между двумя молекулами альдегида или кетона с отщеплением воды. Например, К. к. ацетальдегида приводит к кретоновому альдегиду (II):

CH3CHO+CH3CHO → CH3CH (OH)CHO → CH3-CH=CH-

На первой стадии К. к. происходит так называемая альдольная конденсация, приводящая (в случае альдегида) к альдолю (I); на второй - дегидратация продукта альдольной конденсации. К. к. происходит под действием сильных кислот (например, концентрированной серной кислоты) или оснований (KOH, NaOH, KCN или др.), чаще при нагревании. Альдегиды и кетоны реагируют только по α-метиленовой группе и могут вступать в К. к. с др. соединениями, содержащими активную СН2-группу, например с нитросоединениями:

CH3CHO+CH3CH2NO2 → CH3CH=C (CH3) NO2 + H2O.

К. к. находит применение в органическом синтезе.

КОНДЕНСАЦИЯ         
  • Конденсация на бутылке холодной воды
  • точки росы]]);<br>
''be'', ''cd'' — ''линии конденсации'';<br>
''abcK'' — ''нижняя пограничная кривая'';<br>
''Kdef'' — ''верхняя пограничная кривая (линия росы)'';<br>
''abcKdef'' — ''бинодаль'' (граница между однофазным и двухфазным состояниями; область под колоколом бинодали — область двухфазного равновесия жидкость — пар)
  • Конденсация водяного пара в воздухе над чашкой горячей воды
  • Фазовые переходы первого рода на фазовой диаграмме
ПРОЦЕСС, ПРИ КОТОРОМ МОЛЕКУЛА ПАРА ВОЗВРАЩАЕТСЯ В ЖИДКОСТЬ.
Конденсация (теплотехника)
(от позднелат. condensatio - уплотнение, сгущение), переход вещества из газообразного состояния в жидкое или твердое. Конденсация возможна только при температурах ниже критической температуры.
Конденсация         
  • Конденсация на бутылке холодной воды
  • точки росы]]);<br>
''be'', ''cd'' — ''линии конденсации'';<br>
''abcK'' — ''нижняя пограничная кривая'';<br>
''Kdef'' — ''верхняя пограничная кривая (линия росы)'';<br>
''abcKdef'' — ''бинодаль'' (граница между однофазным и двухфазным состояниями; область под колоколом бинодали — область двухфазного равновесия жидкость — пар)
  • Конденсация водяного пара в воздухе над чашкой горячей воды
  • Фазовые переходы первого рода на фазовой диаграмме
ПРОЦЕСС, ПРИ КОТОРОМ МОЛЕКУЛА ПАРА ВОЗВРАЩАЕТСЯ В ЖИДКОСТЬ.
Конденсация (теплотехника)
(позднелатинское condensatio - сгущение, от латинского condenso уплотняю, сгущаю)

переход вещества из газообразного состояния в жидкое или твёрдое вследствие его охлаждения или сжатия. К. пара возможна только при температурах ниже критической для данного вещества (см. Критическое состояние). К., как и обратный процесс - Испарение, является примером фазовых превращений вещества (фазовых переходов (См. Фазовый переход) 1-го рода). При К. выделяется то же количество теплоты, которое было затрачено на испарение сконденсировавшегося вещества. Дождь, снег, роса, иней - все эти явления природы представляют собой следствие конденсации водяного пара (См. Конденсация водяного пара) в атмосфере. К. широко применяется в технике: в энергетике (например, в конденсаторах паровых турбин), в химической технологии (например, при разделении веществ методом фракционированной конденсации (См. Фракционированная конденсация)), в холодильной и криогенной технике, в опреснительных установках и т. д. Жидкость, образующаяся при К., носит название конденсата. В технике К. обычно осуществляется на охлаждаемых поверхностях. Известны два режима поверхностной К.: плёночный и капельный. Первый наблюдается при К. на смачиваемой поверхности, он характеризуется образованием сплошной плёнки конденсата. На несмачиваемых поверхностях конденсат образуется в виде отдельных капель. При капельной К. интенсивность теплообмена значительно выше, чем при плёночной, т. к. сплошная плёнка конденсата затрудняет теплообмен (см. Кипение).

Скорость поверхностной К. тем выше, чем ниже температура поверхности по сравнению с температурой насыщения пара при заданном давлении. Наличие другого газа уменьшает скорость поверхностной К., т. к. газ затрудняет поступление пара к поверхности охлаждения. В присутствии неконденсирующихся газов К. начинается при достижении паром у поверхности охлаждения парциального давления и температуры, соответствующих состоянию насыщения (росы точке (См. Росы точка)).

К. может происходить также внутри объёма пара (парогазовой смеси). Для начала объёмной К. пар должен быть заметно пересыщен. Мерой пересыщения служит отношение давления пара p к давлению насыщенного пара ps, находящегося в равновесии с жидкой или твёрдой фазой, имеющей плоскую поверхность. Пар пересыщен, если p/ps > 1, при p/ps = 1 пар насыщен. Степень пересыщения p/ps, необходимая для начала. К., зависит от содержания в паре мельчайших пылинок (аэрозолей (См. Аэрозоли)), которые являются готовыми центрами, или ядрами, К. Чем чище пар, тем выше должна быть начальная степень пересыщения. Центрами К. могут служить также электрически заряженные частицы, в частности ионизованные атомы. На этом основано, например, действие ряда приборов ядерной физики (см. Вильсона камера).

Лит.: Кикоин И. К. и Кикоин А. К., Молекулярная физика, М., 1963; Исаченко В. П., Осипова В. А., Сукомел А. С., Теплопередача, 2 изд., М., 1969; Кутателадзе С. С., Теплопередача при конденсации и кипении, 2 изд., М.-Л., 1952.

Д. А. Лабунцов.

Βικιπαίδεια

Конденсация Клайзена

Конденса́ция Кла́йзена (Кля́йзена) — химическая реакция присоединения-фрагментации, в которой принимают участие карбонильная (сложные эфиры) и активированная метиленовая группы (сложные эфиры, альдегиды, кетоны, нитрилы). Реакция протекает в присутствии основных катализаторов, отщепляющих протон от метиленовой группы, и в большинстве случаев в качестве катализаторов используют металлический натрий, алкоголят натрия, амид натрия и гидрид натрия.

Эту реакцию также называют «ацилированием по Клайзену», потому что её можно рассматривать как ацилирование соединений, имеющих активную метиленовую группу.

Реакции такого типа широко распространены в органическом синтезе, так как с их помощью довольно легко получаются углерод-углеродные связи.