Линейная алгебра - ορισμός. Τι είναι το Линейная алгебра
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι Линейная алгебра - ορισμός

РАЗДЕЛ МАТЕМАТИКИ, ИЗУЧАЮЩИЙ ЛИНЕЙНЫЕ ПРОСТРАНСТВА И ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ
Линал; Список литературы по линейной алгебре; Алгебра линейная
  • Синие и сиреневые векторы, сохраняющие направление при линейном преобразовании — собственные, красные — нет
  • Схема алгоритма LU-разложения
  • плоскостей]]. Точка пересечения является решением.

ЛИНЕЙНАЯ АЛГЕБРА         
важная в приложениях часть алгебры, содержащая, в частности, теорию линейных алгебраических уравнений, определителей, матриц.
Линейная алгебра         

наиболее важная в приложениях часть алгебры (См. Алгебра). Первым по времени возникновения вопросом, относящимся к Л. а., была теория линейных уравнений (См. Линейное уравнение). Развитие последней привело к созданию теории определителей (См. Определитель), а затем теории матриц (См. Матрица) и связанной с ней теории векторных пространств (См. Векторное пространство) и линейных преобразований (См. Линейное преобразование) в них. В Л. а. входит также теория форм (См. Форма), в частности квадратичных форм (См. Квадратичная форма), и частично теория инвариантов (См. Инварианты) и Тензорное исчисление. Некоторые разделы функционального анализа (См. Функциональный анализ) представляют собой дальнейшее развитие соответствующих вопросов Л. а., связанное с переходом от n-мерных векторных пространств к бесконечномерным линейным пространствам (См. Линейное пространство).

Лит.: Александров П. С., Лекции по аналитической геометрии..., М., 1968; Курош А. Г., Курс высшей алгебры, 9 изд., М., 1968; Мальцев А. И., Основы линейной алгебры, 3 изд., М., 1970; Фаддеев Д. К., Фаддеева В. Н., Вычислительные методы линейной алгебры, 2 изд., М. - Л., 1963.

Линейная алгебра         
Лине́йная а́лгебра — раздел алгебры, изучающий объекты линейной природы: векторные (или линейные) пространства, линейные отображения, системы линейных уравнений, среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно (в целом или частично) также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают из изучения линейных пространств, но как так

Βικιπαίδεια

Линейная алгебра

Лине́йная а́лгебра — раздел алгебры, изучающий объекты линейной природы: векторные (или линейные) пространства, линейные отображения, системы линейных уравнений, среди основных инструментов, используемых в линейной алгебре — определители, матрицы, сопряжение. Теория инвариантов и тензорное исчисление обычно (в целом или частично) также считаются составными частями линейной алгебры. Такие объекты как квадратичные и билинейные формы, тензоры и операции как тензорное произведение непосредственно вытекают из изучения линейных пространств, но как таковые относятся к полилинейной алгебре.

Линейная алгебра обобщена средствами общей алгебры, в частности, современное определение линейного (векторного) пространства опирается исключительно на абстрактные структуры, а многие результаты линейной алгебры обобщены на произвольные модули над кольцом. Более того, методы линейной алгебры широко используются и в других разделах общей алгебры, в частности, нередко применяется такой приём, как сведение абстрактных структур к линейным и изучение их относительно простыми и хорошо проработанными средствами линейной алгебры, так, например, реализуется в теории представлений групп. Функциональный анализ возник как применение методов математического анализа и линейной алгебры к бесконечномерным линейным пространствам, и во многом базируется на методах линейной алгебры и в дальнейших своих обобщениях. Также линейная алгебра нашла широкое применение в многочисленных приложениях (в том числе, в линейном программировании, в эконометрике) и естественных науках (например, в квантовой механике).

Παραδείγματα από το σώμα κειμένου για Линейная алгебра
1. Между прочим, линейная алгебра и аналитическая геометрия - это один предмет, а не два, - с видом знатока уточнил Андрей.
2. Много внимания уделяется математике: матанализ, линейная алгебра, теория вероятностей, моделирование экономических процессов, математические методы исследования экономики и анализа динамических систем, элементы дискретной математики.
Τι είναι ЛИНЕЙНАЯ АЛГЕБРА - ορισμός