один из важнейших видов моделирования (См.
Моделирование), основанный на аналогии (См.
Аналогия) (в более точных терминах -
Изоморфизме) явлений, имеющих различную физическую природу, но описываемых одинаковыми математическими (дифференциальными, алгебраическими или какими-либо другими) уравнениями.
Простой пример - две системы, первая из которых имеющая механическую природу, состоит из оси, передающей вращение через пружину и маховик, погруженный частично в вязкую тормозящую жидкость, валу, жестко связанному с маховиком. Вторая система - электрическая - состоит из источника электродвижущей силы, соединённого через катушку индуктивности, конденсатор и активное сопротивление со счётчиком электрической энергии. Если подобрать значения индуктивности, ёмкости и сопротивления так, чтобы они определённым образом соответствовали упругости пружины, инерции маховика и трению жидкости, то эти системы обнаружат структурное и функциональное сходство (даже тождество), выражаемое, в частности, в том, что они будут описываться одним и тем же дифференциальным уравнением с постоянными коэффициентами вида
Это уравнение может служить "теоретической моделью" обеих систем, любая же из них - "экспериментальной моделью" этого уравнения и "аналоговой моделью" друг друга. Эта аналогия лежит в основе электрического моделирования механических систем: электрические модели гораздо более удобны для экспериментального исследования, нежели моделируемые механические. Другой традиционной областью применения М. а. является исследование процессов теплопроводности (См.
Теплопроводность)
, основанное на электротепловой и гидротепловой аналогиях (в первой из них аналогами температурного поля в твёрдом теле и теплоёмкости служат соответственно поле электрического потенциала в электропроводной среде и ёмкости некоторых конденсаторов, во второй - температура моделируется уровнем воды в вертикальных стеклянных сосудах, образующих гидравлическую модель, теплоёмкость элементарного объёма - площадью поперечного сечения этих сосудов, а тепловое сопротивление - гидравлическим сопротивлением соединяющих сосуды трубок). Для исследования лучистого (радиационного) переноса тепла часто применяют метод светового моделирования, при котором потоки теплового излучения заменяют подобными им потоками излучения светового. Таким путём определяют угловые коэффициенты излучения, а если оптические свойства (степень черноты и поглощательные способности) соответствующих поверхностей у модели и натуры тождественны, то и распределение тепловых потоков по поверхностям, входящим в систему лучистого теплообмена.
До создания цифровых электронных вычислительных машин в конце 1940-х гг. М. а. было основным способом "предметно-математического моделирования" (см. об этом в ст.
Моделирование) многих процессов, связанных с распространением электромагнитных и звуковых волн, диффузии газов и жидкостей, движения и фильтрации жидкостей в пористых средах, кручения стержней и др. (в связи с чем его часто называли тогда просто "математическим моделированием"), причём для каждой конкретной задачи моделирования строилась своя "сеточная" модель (основными её элементами служили соединённые в плоскую сеточную схему электрические сопротивления различных видов), а аналоговые вычислительные машины (См.
Аналоговая вычислительная машина) позволяли проводить М. а. целых классов однородных задач. В настоящее время значение М. а. значительно уменьшилось, поскольку
моделирование на ЭВМ имеет большие преимущества перед ним в отношении точности моделирования и универсальности. В достаточно фиксированных и специальных задачах свои преимущества (простота, а тем самым и дешевизна технического выполнения) имеет и М. а. Употребительно также и совместное использование обоих методов (см.
Гибридная вычислительная система)
.