Ома закон - ορισμός. Τι είναι το Ома закон
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι Ома закон - ορισμός

Закон Ома для полной цепи; Ома закон
  • Схема, иллюстрирующая три составляющие закона Ома
  • Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления
  • ''R''}} — сопротивление
  • ''R''}} — [[электрическое сопротивление]]

Закон Ома         
Зако́н О́ма — эмпирический физический закон, определяющий связь электродвижущей силы источника (или электрического напряжения) с силой тока, протекающего в проводнике, и сопротивлением проводника. Установлен Георгом Омом в 1826 году (опубликован в 1827 году) и назван в его честь.
Ома закон         

устанавливает, что сила постоянного электрического тока I в проводнике прямо пропорциональна разности потенциалов (напряжению) U между двумя фиксированными точками (сечениями) этого проводника:

RI = U. (1)

Коэффициент пропорциональности R, зависящий от геометрических и электрических свойств проводника и от температуры, называется омическим сопротивлением или просто сопротивлением, данного участка проводника. О. з. открыт в 1826 немецким физиком Г. С. Омом.

В общем случае зависимость между I и U нелинейна, однако на практике всегда можно в определённом интервале напряжений считать её линейной и применять О. з.; для металлов и их сплавов этот интервал практически неограничен.

О. з. в форме (1) справедлив для участков цепи, не содержащих источников электродвижущей силы (эдс). При наличии таких источников (аккумуляторов, термопар, динамомашин и пр.) О. з. имеет вид:

RI = U + E, (2)

где Е - эдс всех источников, включенных в рассматриваемый участок цепи. Для замкнутой цепи О. з. принимает следующую форму:

RпI = E, (3)

где Rn = R + RI - полное сопротивление всей цепи, равное сумме внешнего сопротивления цепи R и внутреннего сопротивления Ri источника эдс. Обобщением О. з. на случай разветвленных цепей являются Кирхгофа правила.

О. з. можно записать также в дифференциальной форме, связывающей в каждой точке проводника плотность тока j с полной напряжённостью электрического поля. Потенциальное электрическое поле напряжённости Е, создаваемое в проводниках микроскопическими зарядами (электронами и ионами) самих проводников, не может поддерживать стационарное движение свободных зарядов (ток), т.к. работа этого поля на замкнутом пути равна нулю. Ток поддерживается неэлектростатическими силами различного происхождения (индукционного, химического, теплового и т.д.), которые действуют в источниках эдс и которые можно представить в виде некоторого эквивалентного непотенциального поля с напряжённостью Естр, называется сторонним. Полная напряжённость поля, действующего внутри проводника на заряды, в общем случае равна Е + Естр. Соответственно дифференциальный О. з. имеет вид:

ρj = E + Естр, или j = σ(E + Естр), (4)

где ρ - удельное сопротивление материала проводника, а σ=1/ρ - удельная электропроводность.

О. з. в комплексной форме справедлив также для синусоидальных квазистационарных токов (См. Квазистационарный ток):

ZI = E, (5)

где Z - полное комплексное сопротивление, равное Z = R+ iX, R - активное, а iX - реактивное сопротивления цепи. При наличии индуктивности L и ёмкости С в цепи квазистационарного тока частоты ωХ = ωL - 1/ω С.

Лит.: Курс физики, под ред. Н. Д. Папалекси, т. 2, М. - Л., 1948; Калашников С. Г., Электричество, М., 1964 (Общий курс физики, т. 2); Физические основы электротехники, под общ. ред. К. М. Поливанова, М. - Л., 1950.

ОМА ЗАКОН         
для участка электрической цепи (проводника), не содержащего источников электродвижущей силы, устанавливает связь между силой тока в проводнике и разностью потенциалов (напряжением) на его концах: сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника. Ома закон для замкнутой неразветвленной цепи: сила тока прямо пропорциональна электродвижущей силе и обратно пропорциональна полному сопротивлению цепи. Закон Ома справедлив для постоянных и квазистационарных токов. Открыт в 1826 Г. С. Омом.

Βικιπαίδεια

Закон Ома

Зако́н О́ма — физический закон, определяющий связь электродвижущей силы источника (или электрического напряжения) с силой тока, протекающего в проводнике, и сопротивлением проводника. Установлен Георгом Омом в 1826 году (опубликован в 1827 году) и назван в его честь.

В своей работе Ом записал закон в следующем виде:

X = a b + l , ( 1 ) {\displaystyle X\!={a \over {b+l}},\qquad (1)}

где:

  • X — показания гальванометра (в современных обозначениях, сила тока I);
  • a — величина, характеризующая свойства источника напряжения, постоянная в широких пределах и не зависящая от величины тока (в современной терминологии, электродвижущая сила (ЭДС) ε);
  • l — величина, определяемая длиной соединяющих проводов (в современных представлениях соответствует сопротивлению внешней цепи R);
  • b — параметр, характеризующий свойства всей электрической установки (в современных представлениях, параметр, в котором можно усмотреть учёт внутреннего сопротивления источника тока r).

Формула (1) при использовании современных терминов выражает закон Ома для полной цепи:

I = ε R + r , ( 2 ) {\displaystyle I\!={\varepsilon \! \over {R+r}},\qquad (2)}

где:

  • ε {\displaystyle {\varepsilon \!}}  — ЭДС источника напряжения, В;
  • I {\displaystyle I}  — сила тока в цепи, А;
  • R {\displaystyle R}  — сопротивление всех внешних элементов цепи, Ом;
  • r {\displaystyle r}  — внутреннее сопротивление источника напряжения, Ом.

Из закона Ома для полной цепи вытекают следующие следствия:

  • при r R {\displaystyle r\ll R} сила тока в цепи обратно пропорциональна её сопротивлению, а сам источник в ряде случаев может быть назван источником напряжения;
  • при r R {\displaystyle r\gg R} сила тока не зависит от свойств внешней цепи (от величины нагрузки), и источник может быть назван источником тока.

Часто выражение

U = I R , ( 3 ) {\displaystyle U\!=IR,\qquad (3)}

где U {\displaystyle U} есть напряжение, или падение напряжения (или, что то же, разность потенциалов между началом и концом участка проводника), тоже называют «законом Ома».

Таким образом, электродвижущая сила в замкнутой цепи, по которой течёт ток в соответствии с (2) и (3) равняется:

ε = I r + I R = U ( r ) + U ( R ) . ( 4 ) {\displaystyle {\varepsilon \!}=Ir+IR=U(r)+U(R).\qquad (4)}

То есть сумма падений напряжения на внутреннем сопротивлении источника тока и на внешней цепи равна ЭДС источника. Последний член в этом равенстве специалисты называют «напряжением на зажимах», поскольку именно его показывает вольтметр, измеряющий напряжение источника между началом и концом присоединённой к нему замкнутой цепи. В таком случае оно всегда меньше ЭДС.

К другой записи формулы (3), а именно:

I = U R ( 5 ) {\displaystyle I\!={U \over R}\qquad (5)}

применима другая формулировка:

Выражение (5) можно переписать в виде

I = U G , ( 6 ) {\displaystyle I\!={UG},\qquad (6)}

где коэффициент пропорциональности G назван проводимость или электропроводность. Изначально единицей измерения проводимости был «обратный ом» — Мо, в Международной системе единиц (СИ) единицей измерения проводимости является си́менс (русское обозначение: См; международное: S), величина которого равна обратному ому.

Τι είναι Закон Ома - ορισμός