Пифагоровы числа - ορισμός. Τι είναι το Пифагоровы числа
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι Пифагоровы числа - ορισμός

Пифагоровы тройки; Пифагоровы числа; Пифагоров треугольник; Пифагоровы треугольники
  • Примитивные пифагоровы тройки. Нечётный катет <math>a</math> отложен на горизонтальной оси, а чётный катет <math>b</math> — на вертикальной. Криволинейная сетка построена из кривых с постоянными величинами <math>m - n</math> и <math>m + n</math> в формуле Евклида
  • [[Диаграмма рассеяния]] катетов <math>(a, b)</math> пифагоровых троек с катетами, не превышающими 6000. Отрицательные значения включены для демонстрации параболических узоров
  • Диаграмма треугольников, полученных из формулы Евклида, показывающая часть конуса <math>z^2 = x^2 + y^2</math>, константы <math>m</math> или <math>n</math> задают след параболы на конусе
  • Демонстрация простейшей пифагоровой тройки; <math>x = a = 3, y = b = 4, z = c = 5</math>.
  • 3, 4, 5 отображается в точку (4/5, 3/5) единичной окружности
  • [[Диаграмма рассеяния]] катетов (''a'',''b'') пифагоровых троек с ''a'' и ''b'' не превосходящими 4500
  • стереографической проекции]] рациональным точкам прямой
  • P}}, в которой прямая пересекает окружность

Пифагоровы числа         

тройки натуральных чисел таких, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным. По теореме, обратной теореме Пифагора (см. Пифагора теорема), для этого достаточно, чтобы они удовлетворяли диофантову уравнению x2 + y2 = z2; таковы, например, числа х = 3, у = 4, z = 5. Все тройки взаимно простых П. ч. можно получить по формулам

х = m2 - n2; у = 2 mn; z = m2 + n2,

где m и n - целые числа, m > n > 0.

ПИФАГОРОВЫ ЧИСЛА         
тройки таких натуральных чисел, что треугольник, длины сторон которого пропорциональны (или равны) этим числам, является прямоугольным, напр. тройка чисел: 3, 4, 5.
Пифагорова тройка         
Пифаго́рова тро́йка — упорядоченный набор из трёх натуральных чисел x,\;y,\;z, удовлетворяющих однородному квадратному уравнению x^2 + y^2 = z^2, описывающему теорему Пифагора. Их называют пифагоровыми числами.

Βικιπαίδεια

Пифагорова тройка

Пифаго́рова тро́йка — упорядоченный набор из трёх натуральных чисел x , y , z {\displaystyle x,\;y,\;z} , удовлетворяющих однородному квадратному уравнению x 2 + y 2 = z 2 {\displaystyle x^{2}+y^{2}=z^{2}} , описывающему теорему Пифагора. Их называют пифагоровыми числами.

Треугольник с длинами сторон, образующими пифагорову тройку, является прямоугольным и также называется пифагоровым.

Τι είναι Пифаг<font color="red">о</font>ровы ч<font color="red">и</font>сла - ορισμός