Плотные и неплотные множества - ορισμός. Τι είναι το Плотные и неплотные множества
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι Плотные и неплотные множества - ορισμός

СОВОКУПНОСТЬ ВСЕХ ВНУТРЕННИХ ТОЧЕК
Внутренняя точка множества; Внутренняя точка; Внутренность множества
  • Точка <math>x</math> — внутренняя, а точка <math>y</math> — не внутренняя (в данном случае — граничная)

Плотные и неплотные множества      

понятия множеств теории (См. Множеств теория). Множество Е называется плотным на М, если каждая точка множества М является предельной точкой (См. Предельная точка) Е, т. е. в любой окрестности имеются точки, принадлежащие Е. Плотные множества на всей прямой называются всюду плотными. Множество называется нигде не плотным (на прямой ), если оно неплотно ни на каком интервале, иными словами, если каждый интервал прямой содержит подинтервал, целиком свободный от точек данного множества. Аналогично определяются множества, нигде не плотные на плоскости или, вообще, в произвольном топологическом пространстве. Для того чтобы замкнутое множество было нигде не плотным, необходимо и достаточно, чтобы его дополнение было всюду плотно. Примером замкнутого (даже совершенного) нигде не плотного множества является т. н. канторово совершенное множество (см. Кантора множество). Сумму счётного множества нигде не плотных множеств называется множеством первой категории, а дополнение к множеству первой категории - множеством второй категории. Эти понятия играют важную роль в теории линейных нормированных пространств (см. Линейное пространство). Различные категории множеств существенны также в теории единственности тригонометрических рядов (См. Тригонометрический ряд).

Лит.: Александров П. С., Введение в общую теорию множеств и функций, ч. 1, М. - Л., 1948.

Плотность множества         
Плотность измеримого множества
Пло́тность (измери́мого) мно́жества E на вещественной прямой \R, в точке x ― предел (если он существует) отношения
Измеримые множества         
МНОЖЕСТВО, ИМЕЮЩЕЕ ИЗМЕРИМУЮ ХАРАКТЕРИСТИЧЕСКУЮ ФУНКЦИЮ
Измеримые множества
(в первоначальном понимании)

множества, к которым применимо данное французским математиком А. Лебегом определение меры (см. Мера множества). И. м. - одно из основных понятий теории функций действительного переменного (см. Функций теория), важнейший и весьма широкий класс точечных множеств. В частности, Замкнутые множества и открытые множества (См. Открытое множество), расположенные на некотором отрезке, являются И. м. В абстрактной теории меры измеримыми по отношению к какой-либо мере μ называются множества, входящие в область определения μ. В случае, когда μ есть распределение вероятностей, И. м. называются также случайными событиями (см. Вероятностей теория).

Βικιπαίδεια

Внутренность

Вну́тренность множества — понятие в общей топологии, обозначающее объединение всех открытых подмножеств данного множества. Точки внутренности называются внутренними точками.

Τι είναι Пл<font color="red">о</font>тные и непл<font color="red">о</font>тные мн<font color="red">о