ЦЕПНАЯ ДРОБЬ - ορισμός. Τι είναι το ЦЕПНАЯ ДРОБЬ
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι ЦЕПНАЯ ДРОБЬ - ορισμός

ДРОБЬ С ДРОБНЫМ ЗНАМЕНАТЕЛЕМ
Цепная дробь; Подходящие дроби; Подходящая дробь; Непрерывные дроби; Цепные дроби; Формула Браункера
  • Книга Катальди
  • золотого сечения]]

Цепная дробь         
ЦЕПНАЯ ДРОБЬ         
то же, что непрерывная дробь.
Непрерывная дробь         

цепная дробь, один из важнейших способов представления чисел и функций. Н. д. есть выражение вида

где a0 - любое целое число, a1, a2,..., an,... - натуральные числа, называемые неполными частными, или элементами, данной Н. д. К Н. д., изображающей некоторое число α, можно прийти, записывая это число в виде

где a0 - целое число и 0 < 1/α1 < 1, затем, записывая в таком же виде α1 и т. д. Число элементов Н. д. может быть конечным или бесконечным; в зависимости от этого Н. д. называют конечной или бесконечной. Н. д. (1) часто символически обозначают так:

[а0; a1, a2,..., an,...] (бесконечная Н. д.) (2)

или

[а0; а1, a2,..., an] (конечная Н. д.). (3)

Конечная Н. д. всегда представляет собой рациональное число; обратно, каждое рациональное число может быть представлено в виде конечной Н. д. (3); такое представление единственно, если потребовать, чтобы an ≠ 1. Н. д. [а0; a1, a2,..., ak] (k n), записанную в виде несократимой дроби pk/qk, называют подходящей дробью порядка k данной Н. д. (2). Числители и знаменатели подходящих дробей связаны рекуррентными формулами:

pk+1 = ak+1pk + pk-1, qk+1 = ak+1qk + qk-1,

которые служат основанием всей теории Н. д. Из этих формул непосредственно вытекает важное соотношение

pkqk-1 - qkpk-1 = ± 1.

Для каждой бесконечной Н. д. существует предел

называемый значением данной Н. д. Каждое иррациональное число является значением единственной бесконечной Н. д., получаемой разложением α указанным выше образом, например

(е - 1)/2 = [0, 1,6, 10,14, 18,...];

квадратичные иррациональности разлагаются в периодические Н. д.

Основное значение Н. д. для приложений заключается в том, что подходящие дроби являются наилучшими приближениями числа α, то есть, что для любой другой дроби m/n, знаменатель которой не более gk имеет место неравенство |nα - m| > |gkα - pkl; при этом |qk. - pk| < 1/qk+1. Нечётные подходящие дроби больше α, а чётные - меньше. При возрастании k нечётные подходящие дроби убывают, а чётные возрастают.

Н. д. используются для приближения иррациональных чисел рациональными. Например, известные приближения 22/7, 355/113 для числа π (отношения длины окружности к диаметру) суть подходящие дроби для разложения π в Н. д. Следует отметить, что первое доказательство иррациональности чисел е и π было дано в 1766 немецким математиком И. Ламбертом с помощью Н. д. Французский математик Ж. Лиувилль доказал: для любого алгебраического числа (См. Алгебраическое число) α степени n можно найти такую постоянную λ, что для любой дроби x/y выполняется неравенство |α - x/y| > λ/уn. С помощью Н. д. можно построить числа α такие, что разность |α - pk/qk| делается меньше α/gk, какую бы постоянную λ мы ни взяли. Так, используя Н. д., можно строить трансцендентные числа. Недостатком Н. д. является чрезвычайная трудность арифметических действий над ними, равносильная практической невозможности этих действий; например, зная элементы двух дробей, мы не можем сколько-нибудь просто получить элементы их суммы или произведения.

Н. д. встречаются уже в 16 в. у Р. Бомбелли. В 17 в. Н. д. изучал Дж. Валлис; ряд важных свойств Н. д. открыл Х. Гюйгенс, занимавшийся ими в связи с теорией зубчатых колёс. Многое сделал для теории Н. д. Л. Эйлер в 18 в.

В 19 в. П. Л. Чебышев, А. А. Марков и др. применили Н. д., элементами которых являются многочлены, к изучению ортогональных многочленов (См. Ортогональные многочлены).

Лит.: Чебышев П. Л., Полное собрание сочинений, 2 изд., т. 1, М. - Л., 1946; Хинчин А. Я., Цепные дроби, 2 изд., М. - Л., 1949; Эйлер Л., Введение в анализ бесконечно малых, пер. с лат., т. 1, М. - Л., 1936; Стилтьес Т. И., Исследования о непрерывных дробях, пер. с франц., Хар. - К., 1936; Perron О., Die Lehre von den Kettenbrüchen, 2 Aufl., Lpz. - B., 1929; Wall Н. S., Analytic theory of continued fractions, Toronto - N. Y. - L., 1948.

Βικιπαίδεια

Непрерывная дробь

Непрерывная дробь (или цепная дробь) — это конечное или бесконечное математическое выражение вида

[ a 0 ; a 1 , a 2 , a 3 , ] = a 0 + 1 a 1 + 1 a 2 + 1 a 3 + , {\displaystyle [a_{0};a_{1},a_{2},a_{3},\cdots ]=a_{0}+{\cfrac {1}{a_{1}+{\cfrac {1}{a_{2}+{\cfrac {1}{a_{3}+\ldots }}}}}},}

где a 0 {\displaystyle a_{0}} есть целое число, а все остальные a n {\displaystyle a_{n}}  — натуральные числа (положительные целые). При этом числа a 0 , a 1 , a 2 , a 3 , {\displaystyle a_{0},a_{1},a_{2},a_{3},\dots } называются неполными частными или элементами цепной дроби.

Любое вещественное число можно представить в виде цепной дроби (конечной или бесконечной). Число представляется конечной цепной дробью тогда и только тогда, когда оно рационально.

Главное (но далеко не единственное) назначение непрерывных дробей состоит в том, что они позволяют находить хорошие приближения вещественных чисел в виде обычных дробей. Непрерывные дроби широко используются в теории чисел и вычислительной математике, а их обобщения оказались чрезвычайно полезны в математическом анализе и других разделах математики. Используются также в физике, небесной механике, технике и других прикладных сферах деятельности.

Τι είναι Цепн<font color="red">а</font>я дробь - ορισμός