проектировать на плоскость - ορισμός. Τι είναι το проектировать на плоскость
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι проектировать на плоскость - ορισμός

Плоскость Мёбиуса; Инверсная плоскость
  • Круговая плоскость: аксиомы (A1), (A2)

ЭКЛИПТИКА         
  • publisher=[[Астронет]]}}</ref>
СЕЧЕНИЕ НЕБЕСНОЙ СФЕРЫ ПЛОСКОСТЬЮ ОРБИТЫ ОБРАЩЕНИЯ ВОКРУГ СОЛНЦА БАРИЦЕНТРА СИСТЕМЫ ЗЕМЛЯ — ЛУНА
Плоскость эклиптики
и, ж.
Большой круг небесной сферы (наклоненный к небесному экватору под углом 23?27), по которому перемещается центр Солнца в его видимом годичном движении, отражающем движение Земли по ее орбите. Плоскость эклиптики (плоскость земной орбиты).
эклиптика         
  • publisher=[[Астронет]]}}</ref>
СЕЧЕНИЕ НЕБЕСНОЙ СФЕРЫ ПЛОСКОСТЬЮ ОРБИТЫ ОБРАЩЕНИЯ ВОКРУГ СОЛНЦА БАРИЦЕНТРА СИСТЕМЫ ЗЕМЛЯ — ЛУНА
Плоскость эклиптики
жен., ·*греч. солнопутье; воображаемый на земле нашей круг, ограничивающий уклоненье солнца от равноденника. -тический, солнопутный.
ЭКЛИПТИКА         
  • publisher=[[Астронет]]}}</ref>
СЕЧЕНИЕ НЕБЕСНОЙ СФЕРЫ ПЛОСКОСТЬЮ ОРБИТЫ ОБРАЩЕНИЯ ВОКРУГ СОЛНЦА БАРИЦЕНТРА СИСТЕМЫ ЗЕМЛЯ — ЛУНА
Плоскость эклиптики
(от греч. ekleipsis - затмение), большой круг небесной сферы, по которому происходит видимое годичное движение Солнца; пересекается с небесным экватором в точках весеннего и осеннего равноденствия. Плоскость эклиптики наклонена к плоскости небесного экватора под углом 23°27'.

Βικιπαίδεια

Круговая плоскость

Круговая плоскость (также плоскость Мёбиуса и инверсная плоскость) — плоскость описываемая системой аксиом идентичности, в которой основную роль играют точки и так называемые обобщённые окружности.

Примером круговой плоскости является евклидова плоскость дополненная одной идеальной точкой ( {\displaystyle \infty } ). Обобщёнными окружностями являются обычные окружности, а также обычные прямые, дополненные точкой {\displaystyle \infty } , отношение инцидентности — отношение принадлежности.

Τι είναι ЭКЛИПТИКА - ορισμός