absorption modulation - meaning and definition. What is absorption modulation
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is absorption modulation - definition

THEOREM
Absorption identities; Absorption Identities; Absorption Law; Absorption laws; Absorption identity

Modulation         
  • A low-frequency message signal (top) may be carried by an AM or FM radio wave.
  • Categorization for signal modulation based on data and carrier types
  • [[Waterfall plot]] of a 146.52 MHz radio carrier, with amplitude modulation by a 1,000 Hz sinusoid. Two strong sidebands at + and - 1 kHz from the carrier frequency are shown.
  •  A carrier, frequency modulated by a 1,000 Hz sinusoid. The [[modulation index]] has been adjusted to around 2.4, so the carrier frequency has small amplitude. Several strong sidebands are apparent; in principle an infinite number are produced in FM but the higher-order sidebands are of negligible magnitude.
PROCESS OF ENCODING INFORMATION BY VARYING PROPERTIES OF A PERIODIC CARRIER WAVEFORM
Modulator; Modulated; Mode of transmission; Pulse modulation; Shift keying; Digital modulation; Pulse Modulation; Modulation (communications); Demod; Periodic current reversal; Pulse modulator; Multi Carrier Modulation; Analog modulation; Modulating signal; Modulation memory; Analog modulation method; Digital modulation method; Digital Modem; Modulated wave; Pulse modulation methods; Pulse time modulation; Automatic digital modulation recognition; Digital carrier modulation; Analog carrier modulation
In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the carrier signal, with a separate signal called the modulation signal that typically contains information to be transmitted. For example, the modulation signal might be an audio signal representing sound from a microphone, a video signal representing moving images from a video camera, or a digital signal representing a sequence of binary digits, a bitstream from a computer.
Modulated         
  • A low-frequency message signal (top) may be carried by an AM or FM radio wave.
  • Categorization for signal modulation based on data and carrier types
  • [[Waterfall plot]] of a 146.52 MHz radio carrier, with amplitude modulation by a 1,000 Hz sinusoid. Two strong sidebands at + and - 1 kHz from the carrier frequency are shown.
  •  A carrier, frequency modulated by a 1,000 Hz sinusoid. The [[modulation index]] has been adjusted to around 2.4, so the carrier frequency has small amplitude. Several strong sidebands are apparent; in principle an infinite number are produced in FM but the higher-order sidebands are of negligible magnitude.
PROCESS OF ENCODING INFORMATION BY VARYING PROPERTIES OF A PERIODIC CARRIER WAVEFORM
Modulator; Modulated; Mode of transmission; Pulse modulation; Shift keying; Digital modulation; Pulse Modulation; Modulation (communications); Demod; Periodic current reversal; Pulse modulator; Multi Carrier Modulation; Analog modulation; Modulating signal; Modulation memory; Analog modulation method; Digital modulation method; Digital Modem; Modulated wave; Pulse modulation methods; Pulse time modulation; Automatic digital modulation recognition; Digital carrier modulation; Analog carrier modulation
·Impf & ·p.p. of Modulate.
Modulator         
  • A low-frequency message signal (top) may be carried by an AM or FM radio wave.
  • Categorization for signal modulation based on data and carrier types
  • [[Waterfall plot]] of a 146.52 MHz radio carrier, with amplitude modulation by a 1,000 Hz sinusoid. Two strong sidebands at + and - 1 kHz from the carrier frequency are shown.
  •  A carrier, frequency modulated by a 1,000 Hz sinusoid. The [[modulation index]] has been adjusted to around 2.4, so the carrier frequency has small amplitude. Several strong sidebands are apparent; in principle an infinite number are produced in FM but the higher-order sidebands are of negligible magnitude.
PROCESS OF ENCODING INFORMATION BY VARYING PROPERTIES OF A PERIODIC CARRIER WAVEFORM
Modulator; Modulated; Mode of transmission; Pulse modulation; Shift keying; Digital modulation; Pulse Modulation; Modulation (communications); Demod; Periodic current reversal; Pulse modulator; Multi Carrier Modulation; Analog modulation; Modulating signal; Modulation memory; Analog modulation method; Digital modulation method; Digital Modem; Modulated wave; Pulse modulation methods; Pulse time modulation; Automatic digital modulation recognition; Digital carrier modulation; Analog carrier modulation
·noun One who, or that which, modulates.

Wikipedia

Absorption law

In algebra, the absorption law or absorption identity is an identity linking a pair of binary operations.

Two binary operations, ¤ and ⁂, are said to be connected by the absorption law if:

a ¤ (ab) = a ⁂ (a ¤ b) = a.

A set equipped with two commutative and associative binary operations {\displaystyle \scriptstyle \lor } ("join") and {\displaystyle \scriptstyle \land } ("meet") that are connected by the absorption law is called a lattice; in this case, both operations are necessarily idempotent.

Examples of lattices include Heyting algebras and Boolean algebras, in particular sets of sets with union and intersection operators, and ordered sets with min and max operations.

In classical logic, and in particular Boolean algebra, the operations OR and AND, which are also denoted by {\displaystyle \scriptstyle \lor } and {\displaystyle \scriptstyle \land } , satisfy the lattice axioms, including the absorption law. The same is true for intuitionistic logic.

The absorption law does not hold in many other algebraic structures, such as commutative rings, e.g. the field of real numbers, relevance logics, linear logics, and substructural logics. In the last case, there is no one-to-one correspondence between the free variables of the defining pair of identities.