cyclical component - meaning and definition. What is cyclical component
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is cyclical component - definition

LEARNING METHOD INVOLVING BASIC FACTS FIRST THEN RELATING DETAILS BACK LATER ON
Cyclical approach
  • pmid=21275727}}</ref>

Electronic component         
  • A quartz crystal (left) and a crystal oscillator
  • 2 different miniature pushbutton switches
  • SMD resistors on the backside of a PCB
  • Some different capacitors for electronic equipment
  • Various examples of Light-emitting diodes
BASIC DISCRETE DEVICE OR PHYSICAL ENTITY IN AN ELECTRONIC SYSTEM USED TO AFFECT ELECTRONS OR THEIR ASSOCIATED FIELDS
Discrete device; Electrical component; Discrete component; Electrical components; Discreet components; Electronic components; Electronic Components; Discrete components; Electonic components; Photoelectric devices; Discrete-device
An electronic component is any basic discrete device or physical entity in an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements.
component architecture         
  • UML]] 2.0.
BRANCH OF SOFTWARE ENGINEERING
Software componentry; Component-oriented programming; Software components; Reusable software component; Reusable Software Components; Reusable software components; Reusable Software Component; Component (software); Component Software; Software component; Component software; Application components; Component based programming; Component-based development; Component-based; Component-based software development; Component-based programming; Component model; Component architecture; Component-based design; Components-based development
<programming> A notion in object-oriented programming where "components" of a program are completely generic. Instead of having a specialised set of methods and fields they have generic methods through which the component can advertise the functionality it supports to the system into which it is loaded. This enables completely dynamic loading of objects. JavaBeans is an example of a component architecture. See also design pattern. (1997-11-20)
Component-based software engineering         
  • UML]] 2.0.
BRANCH OF SOFTWARE ENGINEERING
Software componentry; Component-oriented programming; Software components; Reusable software component; Reusable Software Components; Reusable software components; Reusable Software Component; Component (software); Component Software; Software component; Component software; Application components; Component based programming; Component-based development; Component-based; Component-based software development; Component-based programming; Component model; Component architecture; Component-based design; Components-based development
Component-based software engineering (CBSE), also called component-based development (CBD), is a branch of software engineering that emphasizes the separation of concerns with respect to the wide-ranging functionality available throughout a given software system. It is a reuse-based approach to defining, implementing and composing loosely coupled independent components into systems.

Wikipedia

Spiral approach
See also spiral model, a software development approach.

The spiral approach is a technique often used in education where the initial focus of instruction is the basic facts of a subject, with further details being introduced as learning progresses. Throughout instruction, both the initial basic facts and the relationships to later details are repeatedly emphasized to help enter into long-term memory. This principle is somewhat similar to the inverted pyramid method used in writing news stories, and the game 20 questions.

Jerome Bruner proposed the spiral curriculum as a teaching approach in which each subject or skill area is revisited at intervals, at a more sophisticated level each time. First, there is basic knowledge of a subject, then more sophistication is added, reinforcing principles that were first discussed. This system is used in China and India. Bruner's spiral curriculum, however, draws heavily from evolution to explain how to learn better, and thus it drew criticism from conservatives. In the United States classes are split by grade — life sciences in 9th grade, chemistry in 10th, physics in 11th. The spiral teaches life sciences, chemistry, physics all in one year, then two subjects, then one, then all three again to understand how they mold together. Bruner also believes learning should be spurred by interest in the material rather than tests or punishment, since one learns best when one finds the acquired knowledge appealing.