On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:
Column generation or delayed column generation is an efficient algorithm for solving large linear programs.
The overarching idea is that many linear programs are too large to consider all the variables explicitly. The idea is thus to start by solving the considered program with only a subset of its variables. Then iteratively, variables that have the potential to improve the objective function are added to the program. Once it is possible to demonstrate that adding new variables would no longer improve the value of the objective function, the procedure stops. The hope when applying a column generation algorithm is that only a very small fraction of the variables will be generated. This hope is supported by the fact that in the optimal solution, most variables will be non-basic and assume a value of zero, so the optimal solution can be found without them.
In many cases, this method allows to solve large linear programs that would otherwise be intractable. The classical example of a problem where it is successfully used is the cutting stock problem. One particular technique in linear programming which uses this kind of approach is the Dantzig–Wolfe decomposition algorithm. Additionally, column generation has been applied to many problems such as crew scheduling, vehicle routing, and the capacitated p-median problem.