electromagnetic radiation - meaning and definition. What is electromagnetic radiation
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is electromagnetic radiation - definition

FORM OF ENERGY EMITTED AND ABSORBED BY PARTICLES WHICH ARE CHARGED WHICH SHOWS WAVE-LIKE BEHAVIOR AS IT TRAVELS THROUGH SPACE
Electromagnectic radiation; Electromagnetic wave; Light wave; Electromagnetic waves; EM radiation; E.M. radiation; E. M. radiation; RF radiation; Electro-magnetic radiation; Magnetoelectric wave; Theory of radiation; Electromagnetic Radiation; Radiation emission; Radiation emissions; Em wave; EM wave; EM Waves; E-M Waves; Em waves; Electronic smog; Electromagnetic Wave; Electromagnetic wave theory; Electro magnetic waves; Emag waves; Electrical smog; Electromagnetic resonance; Electromagnetic Waves; Electro magnetic energy; Electromagnetic emission; Electromagnetic emissions; Photon radiation; Electromagnetic signal; E/M wave
  • opacity]]) of various [[wavelength]]s of electromagnetic radiation
  • Representation of the electric field vector of a wave of circularly polarized electromagnetic radiation.
  • [[Electromagnetic spectrum]] with visible light highlighted
  • Electromagnetic waves can be imagined as a self-propagating transverse oscillating wave of electric and magnetic fields. This 3D animation shows a plane linearly polarized wave propagating from left to right. The electric and magnetic fields in such a wave are in-phase with each other, reaching minima and maxima together.
  • far field]] part of the electromagnetic field around a transmitter. A part of the "near-field" close to the transmitter, forms part of the changing [[electromagnetic field]], but does not count as electromagnetic radiation.
  • [[James Clerk Maxwell]]
  • '''Legend:'''<br />
γ = [[Gamma ray]]s<br />
<br />
HX = Hard [[X-ray]]s<br />
SX = Soft X-Rays<br />
<br />
EUV = Extreme-[[ultraviolet]]<br />
NUV = Near-ultraviolet<br />
<br />
[[Visible light]] (colored bands)<br />
<br />
NIR = Near-[[infrared]]<br />
MIR = Mid-infrared<br />
FIR = Far-infrared<br />
<br />
EHF = [[Extremely high frequency]] (microwaves)<br />
SHF = [[Super-high frequency]] (microwaves)<br />
<br />
UHF = [[Ultrahigh frequency]] (radio waves)<br />
VHF = [[Very high frequency]] (radio)<br />
HF = [[High frequency]] (radio)<br />
MF = [[Medium frequency]] (radio)<br />
LF = [[Low frequency]] (radio)<br />
VLF = [[Very low frequency]] (radio)<br />
VF = [[Voice frequency]]<br />
ULF = [[Ultra-low frequency]] (radio)<br />
SLF = [[Super-low frequency]] (radio)<br />
ELF = [[Extremely low frequency]] (radio)
  • 400x200px
  • light]] (blue, green, and red) with a distance scale in micrometers along the x-axis.

electromagnetic radiation         
¦ noun Physics a kind of radiation including visible light, radio waves, gamma rays, and X-rays, in which electric and magnetic fields vary simultaneously.
Electromagnetic radiation         
In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry electromagnetic radiant energy.* p 430: "These waves...
Absorption (electromagnetic radiation)         
WAY IN WHICH THE ENERGY OF A PHOTON IS TAKEN UP BY MATTER; PHYSICAL PROCESS OF ABSORBING LIGHT, WHILE ABSORBANCE DOES NOT ALWAYS MEASURE ABSORPTION: IT MEASURES ATTENUATION (OF TRANSMITTED RADIANT POWER)
Molecular absorption; Absorption of Light; Optical absorption; Absorption (optics); Absorption (light); Absorption of electromagnetic radiation; Light absorption; Absorption (of electromagnetic radiation); Absorption of light; Radiation absorption
In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy — and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy). A notable effect is attenuation, or the gradual reduction of the intensity of light waves as they propagate through a medium.

Wikipedia

Electromagnetic radiation

In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. Types of EMR include radio waves, microwaves, infrared, (visible) light, ultraviolet, X-rays, and gamma rays, all of which are part of the electromagnetic spectrum.

Classically, electromagnetic radiation consists of electromagnetic waves, which are synchronized oscillations of electric and magnetic fields. Depending on the frequency of oscillation, different wavelengths of electromagnetic spectrum are produced. In a vacuum, electromagnetic waves travel at the speed of light, commonly denoted c. In homogeneous, isotropic media, the oscillations of the two fields are perpendicular to each other and perpendicular to the direction of energy and wave propagation, forming a transverse wave. The position of an electromagnetic wave within the electromagnetic spectrum can be characterized by either its frequency of oscillation or its wavelength. Electromagnetic waves of different frequency are called by different names since they have different sources and effects on matter. In order of increasing frequency and decreasing wavelength these are: radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.

Electromagnetic waves are emitted by electrically charged particles undergoing acceleration, and these waves can subsequently interact with other charged particles, exerting force on them. EM waves carry energy, momentum and angular momentum away from their source particle and can impart those quantities to matter with which they interact. Electromagnetic radiation is associated with those EM waves that are free to propagate themselves ("radiate") without the continuing influence of the moving charges that produced them, because they have achieved sufficient distance from those charges. Thus, EMR is sometimes referred to as the far field. In this language, the near field refers to EM fields near the charges and current that directly produced them, specifically electromagnetic induction and electrostatic induction phenomena.

In quantum mechanics, an alternate way of viewing EMR is that it consists of photons, uncharged elementary particles with zero rest mass which are the quanta of the electromagnetic field, responsible for all electromagnetic interactions. Quantum electrodynamics is the theory of how EMR interacts with matter on an atomic level. Quantum effects provide additional sources of EMR, such as the transition of electrons to lower energy levels in an atom and black-body radiation. The energy of an individual photon is quantized and is greater for photons of higher frequency. This relationship is given by Planck's equation E = hf, where E is the energy per photon, f is the frequency of the photon, and h is Planck's constant. A single gamma ray photon, for example, might carry ~100,000 times the energy of a single photon of visible light.

The effects of EMR upon chemical compounds and biological organisms depend both upon the radiation's power and its frequency. EMR of visible or lower frequencies (i.e., visible light, infrared, microwaves, and radio waves) is called non-ionizing radiation, because its photons do not individually have enough energy to ionize atoms or molecules, or break chemical bonds. The effects of these radiations on chemical systems and living tissue are caused primarily by heating effects from the combined energy transfer of many photons. In contrast, high frequency ultraviolet, X-rays and gamma rays are called ionizing radiation, since individual photons of such high frequency have enough energy to ionize molecules or break chemical bonds. These radiations have the ability to cause chemical reactions and damage living cells beyond that resulting from simple heating, and can be a health hazard.

Examples of use of electromagnetic radiation
1. Do people react differently to electromagnetic radiation?
2. They‘re also delaying any reduction of electromagnetic radiation from their power lines.
3. What happens when electromagnetic radiation comes into contact with the human body?
4. Such shielding is designed to prevent everyday electromagnetic radiation from entering and/or exiting the device.
5. Mobiles seeking a signal emit more electromagnetic radiation than when there is strong reception, experts said.