knapsack algorithm - meaning and definition. What is knapsack algorithm
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is knapsack algorithm - definition

PROBLEM IN COMBINATORIAL OPTIMIZATION
0/1 knapsack problem; 0-1 knapsack problem; Unbounded knapsack problem; Unbounded Knapsack Problem; Binary knapsack problem; Napsack problem; Backpack problem; 0-1 Knapsack problem; Integer knapsack problem; Knapsack Problem; Algorithms for solving knapsack problems; Methods for solving knapsack problems; Approximation algorithms for the knapsack problem; Bounded knapsack problem; Multiple knapsack problem; Rucksack problem; Computational complexity of the knapsack problem
  • multiple constrained problem]] could consider both the weight and volume of the boxes. <br />(Solution: if any number of each box is available, then three yellow boxes and three grey boxes; if only the shown boxes are available, then all except for the green box.)
  • A demonstration of the dynamic programming approach.

Quadratic knapsack problem         
0-1 quadratic knapsack problem
The quadratic knapsack problem (QKP), first introduced in 19th century, is an extension of knapsack problem that allows for quadratic terms in the objective function: Given a set of items, each with a weight, a value, and an extra profit that can be earned if two items are selected, determine the number of items to include in a collection without exceeding capacity of the knapsack, so as to maximize the overall profit. Usually, quadratic knapsack problems come with a restriction on the number of copies of each kind of item: either 0, or 1.
Prim's algorithm         
  • The adjacency matrix distributed between multiple processors for parallel Prim's algorithm. In each iteration of the algorithm, every processor updates its part of ''C'' by inspecting the row of the newly inserted vertex in its set of columns in the adjacency matrix. The results are then collected and the next vertex to include in the MST is selected globally.
  • generation]] of this maze, which applies Prim's algorithm to a randomly weighted [[grid graph]].
  • Prim's algorithm starting at vertex A. In the third step, edges BD and AB both have weight 2, so BD is chosen arbitrarily. After that step, AB is no longer a candidate for addition to the tree because it links two nodes that are already in the tree.
  • Demonstration of proof. In this case, the graph ''Y<sub>1</sub>'' = ''Y'' − ''f'' + ''e'' is already equal to ''Y''. In general, the process may need to be repeated.
ALGORITHM
Jarnik algorithm; Prim-Jarnik algorithm; Prim-Jarnik's algorithm; Jarnik's algorithm; Prim-Jarník; DJP algorithm; Jarník algorithm; Jarník's algorithm; Jarníks algorithm; Jarniks algorithm; Prim-Jarník algorithm; Prim-Jarnik; Prim algorithm; Prim’s algorithm; Jarník-Prim; Prims algorithm
In computer science, Prim's algorithm (also known as Jarník's algorithm) is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized.
Dinic's algorithm         
  • 300px
  • 300px
  • 300px
  • 300px
  • 300px
  • 300px
  • 300px
  • 300px
  • 300px
ALGORITHM FOR COMPUTING THE MAXIMAL FLOW OF A NETWORK
Dinic's Algorithm; Dinitz blocking flow algorithm; Blocking flow; Dinic algorithm
Dinic's algorithm or Dinitz's algorithm is a strongly polynomial algorithm for computing the maximum flow in a flow network, conceived in 1970 by Israeli (formerly Soviet) computer scientist Yefim (Chaim) A. Dinitz.

Wikipedia

Knapsack problem

The knapsack problem is the following problem in combinatorial optimization:

Given a set of items, each with a weight and a value, determine which items to include in the collection so that the total weight is less than or equal to a given limit and the total value is as large as possible.

It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items. The problem often arises in resource allocation where the decision-makers have to choose from a set of non-divisible projects or tasks under a fixed budget or time constraint, respectively.

The knapsack problem has been studied for more than a century, with early works dating as far back as 1897. The name "knapsack problem" dates back to the early works of the mathematician Tobias Dantzig (1884–1956), and refers to the commonplace problem of packing the most valuable or useful items without overloading the luggage.