On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:
Enter any text. Translation will be done by artificial intelligence technology.
This tool enables you to refine the text you composed in a non-native language.
It also produces excellent results when processing text translated by artificial intelligence.
This tool allows you to create a summary of text in any language.
Enter a small fragment of text, and artificial intelligence will expand it.
Enter any text. Speech will be generated by artificial intelligence.
Enter a verb in any language. The system will provide a conjugation table for the verb in all possible tenses.
Enter any question in free form in any language.
You can enter detailed queries from several sentences. For example:
In chemistry, mechanically-interlocked molecular architectures (MIMAs) are molecules that are connected as a consequence of their topology. This connection of molecules is analogous to keys on a keychain loop. The keys are not directly connected to the keychain loop but they cannot be separated without breaking the loop. On the molecular level, the interlocked molecules cannot be separated without the breaking of the covalent bonds that comprise the conjoined molecules; this is referred to as a mechanical bond. Examples of mechanically interlocked molecular architectures include catenanes, rotaxanes, molecular knots, and molecular Borromean rings. Work in this area was recognized with the 2016 Nobel Prize in Chemistry to Bernard L. Feringa, Jean-Pierre Sauvage, and J. Fraser Stoddart.
The synthesis of such entangled architectures has been made efficient by combining supramolecular chemistry with traditional covalent synthesis, however mechanically interlocked molecular architectures have properties that differ from both "supramolecular assemblies" and "covalently bonded molecules". The terminology "mechanical bond" has been coined to describe the connection between the components of mechanically interlocked molecular architectures. Although research into mechanically interlocked molecular architectures is primarily focused on artificial compounds, many examples have been found in biological systems including: cystine knots, cyclotides or lasso-peptides such as microcin J25 which are proteins, and a variety of peptides.