oxidation susceptibility - meaning and definition. What is oxidation susceptibility
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is oxidation susceptibility - definition

MEASURE OF HOW MUCH A MATERIAL WILL BECOME MAGNETIZED IN AN APPLIED MAGNETIC FIELD
Magnetic Susceptibility; Magnetizability; Specific susceptibility; Mass susceptibility; Magnetic susceptibility (crewmate)

Magnetic Susceptibility         
The specific intrinsic susceptibility of any material for magnetic induction. It refers to the particle of matter, and not to the mass, as in the latter its own particles react on each other and bring about what is termed permeability, q. v. (See also Magnetization, Coefficient of Induced, and Magnetic Induction, Coefficient of.) Synonym--Coefficient of Induced Magnetization.
oxidation number         
  • 240px
  • 240px
  • 450px
  • 360px
  • 200px
  • 600px
  • 450px
  • 420px
  • 280px
  • 240px
  • 500px
  • 380px
  • 500px
  • 200px
  • 240px
  • 450px
  • 450px
  • 240px
  • 700px
  • 600px
NUMBER THAT DESCRIBES DEGREE OF OXIDATION OF AN ATOM IN A CHEMICAL COMPOUND; THE HYPOTHETICAL CHARGE THAT AN ATOM WOULD HAVE IF ALL BONDS TO ATOMS OF DIFFERENT ELEMENTS WERE FULLY IONIC
Oxidation states; Oxidation State; Metal oxidation state; Oxidation number; Oxidation numbers; List of oxidation numbers by element; List of oxidation states by element; Elementary state; List of oxidation states; Oxidation value; List of oxidation states of the elements
(also oxidation state)
¦ noun Chemistry a number representing the number of electrons lost or gained by an atom of a particular element when chemically combined.
Oxidation state         
  • 240px
  • 240px
  • 450px
  • 360px
  • 200px
  • 600px
  • 450px
  • 420px
  • 280px
  • 240px
  • 500px
  • 380px
  • 500px
  • 200px
  • 240px
  • 450px
  • 450px
  • 240px
  • 700px
  • 600px
NUMBER THAT DESCRIBES DEGREE OF OXIDATION OF AN ATOM IN A CHEMICAL COMPOUND; THE HYPOTHETICAL CHARGE THAT AN ATOM WOULD HAVE IF ALL BONDS TO ATOMS OF DIFFERENT ELEMENTS WERE FULLY IONIC
Oxidation states; Oxidation State; Metal oxidation state; Oxidation number; Oxidation numbers; List of oxidation numbers by element; List of oxidation states by element; Elementary state; List of oxidation states; Oxidation value; List of oxidation states of the elements
In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound.

Wikipedia

Magnetic susceptibility

In electromagnetism, the magnetic susceptibility (from Latin susceptibilis 'receptive'; denoted χ, chi) is a measure of how much a material will become magnetized in an applied magnetic field. It is the ratio of magnetization M (magnetic moment per unit volume) to the applied magnetizing field intensity H. This allows a simple classification, into two categories, of most materials' responses to an applied magnetic field: an alignment with the magnetic field, χ > 0, called paramagnetism, or an alignment against the field, χ < 0, called diamagnetism.

Magnetic susceptibility indicates whether a material is attracted into or repelled out of a magnetic field. Paramagnetic materials align with the applied field and are attracted to regions of greater magnetic field. Diamagnetic materials are anti-aligned and are pushed away, toward regions of lower magnetic fields. On top of the applied field, the magnetization of the material adds its own magnetic field, causing the field lines to concentrate in paramagnetism, or be excluded in diamagnetism. Quantitative measures of the magnetic susceptibility also provide insights into the structure of materials, providing insight into bonding and energy levels. Furthermore, it is widely used in geology for paleomagnetic studies and structural geology.

The magnetizability of materials comes from the atomic-level magnetic properties of the particles of which they are made. Usually, this is dominated by the magnetic moments of electrons. Electrons are present in all materials, but without any external magnetic field, the magnetic moments of the electrons are usually either paired up or random so that the overall magnetism is zero (the exception to this usual case is ferromagnetism). The fundamental reasons why the magnetic moments of the electrons line up or do not are very complex and cannot be explained by classical physics. However, a useful simplification is to measure the magnetic susceptibility of a material and apply the macroscopic form of Maxwell's equations. This allows classical physics to make useful predictions while avoiding the underlying quantum mechanical details.