UVB - translation to french
Online Dictionary

UVB - translation to french

Ultra-violet radiation; Ultraviolet radiation; UV; Ultraviolet energy; Ultraviolet light; UV-A; UV-C; UV-B; UVB; UV radiation; Uv; Ultra-violet; Ultraviolet Light; Ultraviolet Rays; Ultraviolet Radiation; UV Radiation; Uv light; UV light; Near ultraviolet; Near UV; UVB radiation; UVA radiation; UV Light; Ultraviolet light absorber; Ultraviolet radiation (biology); Ultra violet; Ultraviolet lamp; Deep ultraviolet; Vacuum UV; Vacuum ultraviolet; Deep UV; Ultraviolet A; Ultraviolet a; Ultraviolet B; Ultraviolet b; Ultraviolet C; Ultraviolet c; Ultra-Violet; UV rays; Ultraviolet Light Absorber; Ultraviolet irradiation; Near-ultraviolet; Ultra-violet light; UV A; UV B; Bee's purple; Ultraviolet ray; UV-light; Ultraviolet-B; UV ray; Ultraviolet rays; UVA blocker; UV-radiation; Far-ultraviolet; Ultraviolet lighting; UV lamp; UV lamps; Far ultraviolet; Uv-B; Ultraviolet Lamp; Ultraviolet waves; Diurnal variation of ultraviolet light; Diurnal variation of ultaviolet light; UV protection; Ultraviolet a radiation; Ultraviolet b radiation; Ultraviolet c radiation; Ultraviolet type; U.V.; Thitonic rays; Chemical rays; UV light irradiation; NUV photons; VUV radition; VUV radiation; Pulsed ultraviolet light; UVR; Vaccum ultraviolet; Ultraviolet LED; Ultraviolet LEDs; UV-irradiation; Ultra violet rays; Hard ultraviolet; UV photon; Middle ultraviolet; Ultra violet light; Oxidizing rays; Tithonic rays; Hard UV; Soft ultraviolet; Soft UV; Dorno radiation; Middle UV; Far UV; UV C; Ultraviolet-A; Ultraviolet-C; H Lyman-α; Hydrogen Lyman-alpha; Hydrogen Lyman-alpha ultraviolet; H Lyman-α ultraviolet; Hydrogen Lyman-alpha radiation; H Lyman-α radiation; Far UV-C; Far UVC; UVB (radiation); UVA (radiation); UVC (radiation); NUV (radiation); MUV (radiation); FUV (radiation); VUV (radiation); Far-UVC; Far-UVC light; Far UV-C light; Dark tithonic rays; De-oxidizing rays; Deoxidizing rays; De-oxidising rays; Deoxidising rays; De-oxidierende Strahlen; Oxidising rays; Ultraviolet spectrum
  • Ultraviolet photons harm the [[DNA]] molecules of living organisms in different ways. In one common damage event, adjacent [[thymine]] bases bond with each other, instead of across the "ladder". This "[[thymine dimer]]" makes a bulge, and the distorted DNA molecule does not function properly.
  • Sunburn effect (as measured by the [[UV index]]) is the product of the sunlight spectrum (radiation intensity) and the erythemal action spectrum (skin sensitivity) across the range of UV wavelengths. Sunburn production per milliwatt of radiation intensity is increased by nearly a factor of 100 between the near UV‑B wavelengths of 315–295 nm
  • UV damaged [[polypropylene]] rope (left) and new rope (right)
  • A collection of mineral samples fluorescing brilliantly at various wavelengths as seen while being irradiated by UV light.
  • IR spectrum showing carbonyl absorption due to UV degradation of [[polyethylene]]
  • Aurora at [[Jupiter]]'s north pole as seen in ultraviolet light by the [[Hubble Space Telescope]].
  • DU/km]]) and blocking of different bands of ultraviolet radiation: In essence, all UVC is blocked by diatomic oxygen (100–200 nm) or by ozone (triatomic oxygen) (200–280 nm) in the atmosphere. The ozone layer then blocks most UVB. Meanwhile, UVA is hardly affected by ozone, and most of it reaches the ground. UVA makes up almost all UV light that penetrates the Earth's atmosphere.
  • A bird appears on many Visa credit cards when they are held under a UV light source
  • sterilizing]] microbiological contaminants from irradiated surfaces.
  • A 380 nanometer UV LED makes some common household items fluoresce.
  • A portrait taken using only UV light between the wavelengths of 335 and 365 nanometers.
  • Signs are often used to warn of the hazard of strong UV sources.
  • Demonstration of the effect of sunscreen. The man's face has sunscreen on his right side only. The left image is a regular photograph of his face; the right image is of reflected UV light. The side of the face with sunscreen is darker because the sunscreen absorbs the UV light.
  • Effects of UV on finished surfaces in 0, 20 and 43 hours.
  • After a training exercise involving fake [[body fluids]], a healthcare worker's [[personal protective equipment]] is checked with ultraviolet light to find invisible drops of fluids. These fluids could contain deadly viruses or other contamination.

UVB, ultraviolet B, electromagnetic radiation with a wavelength of between 280 and 320 nanometers, radiant component of sunlight which causes sunburn and skin cancer


¦ abbreviation ultraviolet radiation of relatively short wavelengths.



Ultraviolet (UV) is a form of electromagnetic radiation with wavelength shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight, and constitutes about 10% of the total electromagnetic radiation output from the Sun. It is also produced by electric arcs, Cherenkov radiation, and specialized lights, such as mercury-vapor lamps, tanning lamps, and black lights. Although long-wavelength ultraviolet is not considered an ionizing radiation because its photons lack the energy to ionize atoms, it can cause chemical reactions and causes many substances to glow or fluoresce. Many practical applications, including chemical and biological effects, derive from the way that UV radiation can interact with organic molecules. These interactions can involve absorption or adjusting energy states in molecules, but do not necessarily involve heating.

Short-wave ultraviolet light damages DNA and sterilizes surfaces with which it comes into contact. For humans, suntan and sunburn are familiar effects of exposure of the skin to UV light, along with an increased risk of skin cancer. The amount of UV light produced by the Sun means that the Earth would not be able to sustain life on dry land if most of that light were not filtered out by the atmosphere. More energetic, shorter-wavelength "extreme" UV below 121 nm ionizes air so strongly that it is absorbed before it reaches the ground. However, ultraviolet light (specifically, UVB) is also responsible for the formation of vitamin D in most land vertebrates, including humans. The UV spectrum, thus, has effects both beneficial and harmful to life.

The lower wavelength limit of human vision is conventionally taken as 400 nm, so ultraviolet rays are invisible to humans, although people can sometimes perceive light at shorter wavelengths than this. Insects, birds, and some mammals can see near-UV (NUV) (i.e., slightly shorter wavelengths than what humans can see).

Pronunciation examples for UVB
1. But UVB and UVA
2. But all of the UVB,
3. UVB turns out to be incredibly important.
4. because we're not getting as much of the UVB rays.
A Diabetes Cure Designed for Diverse Cultures _ Ronesh Sinha _ Talks at Google
Examples of use of UVB
1. Et pour cause, " la rétine est naturellement protégée des radiations ultraviolettes de longueur donde inférieure ŕ 380 nanom';tres (UVB et UVA courts) ou supérieure ŕ 1400 nanom';tres, car ces radiations sont arrętées au niveau de la cornée, cristallin et milieu intérieur de lśil.