On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:
общая лексика
ECC
шифрование в эллиптических кривых, криптография на эллиптических кривых
быстро развивающееся направление асимметричного шифрования и ЭЦП. В ECC все вычисления производятся над точками эллиптической кривой, т.е., вместо обычного сложения двух чисел выполняется по определенным правилам сложение двух точек кривой, при этом в качестве результата получается третья точка
Смотрите также
математика
эллиптическая кривая
The Lenstra elliptic-curve factorization or the elliptic-curve factorization method (ECM) is a fast, sub-exponential running time, algorithm for integer factorization, which employs elliptic curves. For general-purpose factoring, ECM is the third-fastest known factoring method. The second-fastest is the multiple polynomial quadratic sieve, and the fastest is the general number field sieve. The Lenstra elliptic-curve factorization is named after Hendrik Lenstra.
Practically speaking, ECM is considered a special-purpose factoring algorithm, as it is most suitable for finding small factors. Currently, it is still the best algorithm for divisors not exceeding 50 to 60 digits, as its running time is dominated by the size of the smallest factor p rather than by the size of the number n to be factored. Frequently, ECM is used to remove small factors from a very large integer with many factors; if the remaining integer is still composite, then it has only large factors and is factored using general-purpose techniques. The largest factor found using ECM so far has 83 decimal digits and was discovered on 7 September 2013 by R. Propper. Increasing the number of curves tested improves the chances of finding a factor, but they are not linear with the increase in the number of digits.