Дирихле интеграл - meaning and definition. What is Дирихле интеграл
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:     

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is Дирихле интеграл - definition

Дирихле задача; Проблема Дирихле
  • Решение задачи Дирихле на кольце с краевыми условиями: <math>u(2,\varphi)=0</math>, <math>u(4,\varphi)=4 \sin (5\varphi)</math>

Дирихле интеграл      
(по имени П. Г. Л. Дирихле)

название интегралов нескольких типов.

1) Интеграл

Этот Д. и. называется также разрывным множителем Дирихле и равен π/2 при β < α, π/4 при β = α и 0 при β > α. Таким образом, Д. и. (1) является разрывной функцией от параметров α и β. Дирихле использовал интеграл (1) в своих исследованиях о притяжении эллипсоидов. Впрочем, этот интеграл встречается ранее у Ж. Фурье, С. Пуассона и А. Лежандра.

2) Интеграл

где

есть так называемое ядро Дирихле. Этот Д. и. равен n-й частичной сумме

ряда Фурье функции f (х). Формула (2) является одной из важнейших формул теории рядов Фурье, в частности, позволившей Дирихле установить, что ряд Фурье функции, имеющей конечное число максимумов и минимумов, сходится в каждой точке.

3) Интеграл

Подробнее см. Дирихле принцип (в теории гармонических функций).

Задача Дирихле         
Задача Дирихле — вид задач, появляющийся при решении дифференциальных уравнений в частных производных второго порядка. Названа в честь Петера Густава Дирихле.
Дирихле задача         
(по имени П. Г. Л. Дирихле)

задача об отыскании гармонической функции (См. Гармонические функции) по её значениям, заданным на границе рассматриваемой области.

Wikipedia

Задача Дирихле

Задача Дирихле — вид задач, появляющийся при решении дифференциальных уравнений в частных производных второго порядка. Названа в честь Петера Густава Дирихле.