КРЕМНИЙОРГАНИЧЕСКИЕ ПОЛИМЕРЫ - meaning and definition. What is КРЕМНИЙОРГАНИЧЕСКИЕ ПОЛИМЕРЫ
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is КРЕМНИЙОРГАНИЧЕСКИЕ ПОЛИМЕРЫ - definition

Силикон; Полиорганосилоксаны; Кремнийорганические полимеры
  • Силиконовый [[герметик]]
  • Полидиметил-силоксан — простейший представитель силиконов
  • 400 px

Кремнийорганические полимеры         

высокомолекулярные соединения, содержащие атомы кремния, углерода и др. элементов в элементарном звене макромолекулы (См. Макромолекула). В зависимости от химического строения основной цепи К. п. делят на 3 основные группы: 1) с неорганическими главными цепями макромолекул, которые состоят из чередующихся атомов кремния и др. элементов (О, N, S, Al, Ti, В и др.); при этом углерод входит лишь в состав групп, обрамляющих главную цепь; 2) с органонеорганическими главными цепями макромолекул, которые состоят из чередующихся атомов кремния и углерода, а иногда и кислорода; 3) с органическими главными цепями макромолекул (см. табл.). Наиболее подробно изучены и широко применяются полиорганосилоксаны, а также полиметаллоорганосилоксаны и полиорганосилазаны.

В зависимости от строения главной полимерной цепи К. п., подобно другим полимерам, можно разделить на линейные, разветвленные, циклолинейные (лестничные) и сшитые (в т. ч. циклосетчатые).

Полиорганосилоксаны. Многие особенности механических и физико-химических свойств этих полимеров связаны с высокой гибкостью их макромолекул и относительно малым межмолекулярным взаимодействием. Высокая гибкость силоксановой цепи утрачивается при переходе от линейной структуры к лестничной.

Линейные и разветвленные полиорганосилоксаны с невысокой молярной массой - вязкие бесцветные жидкости. Высокомолекулярные линейные полиорганосилоксаны - эластомеры, а сшитые и разветвлённые - эластичные или хрупкие стеклообразные вещества. Линейные, разветвленные и лестничные полимеры растворимы в большинстве органических растворителей (плохо - в низших спиртах). Полиорганосилоксаны устойчивы к действию большинства кислот и щелочей; разрыв силоксановой связи Si-O вызывают лишь концентрированные щёлочи и концентрированная серная кислота.

Полиорганосилоксаны характеризуются высокой термостойкостью, обусловленной высокой энергией связи Si-O, а также отличными диэлектрическими характеристиками. Так, сшитый полидиметилфенилсилоксан при 20°С имеет тангенс угла диэлектрических потерь (1-2)․10-3, диэлектрическая проницаемость 3-3,5 (при 800 гц), удельное объёмное электрическое сопротивление 103 Том․м (1017 ом․см) и электрическая прочность 70-100 кв/мм при толщине образца 50 мкм.

Основные типы линейных кремнийорганических полимеров

------------------------------------------------------------------------------------------------------------------------------------------------------------

| Название | Структура главной цепи |

|----------------------------------------------------------------------------------------------------------------------------------------------------------|

| Полимеры с неорганическими главными цепями: |

|----------------------------------------------------------------------------------------------------------------------------------------------------------|

| Полиорганосилоксаны | |

|----------------------------------------------------------------------------------------------------------------------------------------------------------|

| Полиэлементоорганосилоксаны* | |

|----------------------------------------------------------------------------------------------------------------------------------------------------------|

| Полиорганосилазаны | |

|----------------------------------------------------------------------------------------------------------------------------------------------------------|

| Полиорганосилтианы | |

|----------------------------------------------------------------------------------------------------------------------------------------------------------|

| Полиорганосиланы | |

|----------------------------------------------------------------------------------------------------------------------------------------------------------|

| Полиорганосилазоксаны | |

|----------------------------------------------------------------------------------------------------------------------------------------------------------|

| Полимеры с органонеорганическими главными цепями: |

|----------------------------------------------------------------------------------------------------------------------------------------------------------|

| Полиорганоалкиленсиланы | |

|----------------------------------------------------------------------------------------------------------------------------------------------------------|

| Полиорганофениленсиланы | |

|----------------------------------------------------------------------------------------------------------------------------------------------------------|

| Полиорганоалкиленсилоксаны | |

|----------------------------------------------------------------------------------------------------------------------------------------------------------|

| Полиорганофениленалюмосилоксаны | |

|----------------------------------------------------------------------------------------------------------------------------------------------------------|

| Полимеры с органическими главными цепями: |

|----------------------------------------------------------------------------------------------------------------------------------------------------------|

| Полиалкенилсиланы | |

|----------------------------------------------------------------------------------------------------------------------------------------------------------|

| - | |

------------------------------------------------------------------------------------------------------------------------------------------------------------

* Если Э - металл, полимеры называются полиметаллоорганосилоксанами.

Механическая прочность полиорганосилоксанов невысока по сравнению с прочностью таких высокополярных полимеров, как, например, Полиамиды.

Полиорганосилоксаны получают следующими методами.

1) Гидролитическая Поликонденсация кремнийорганических соединений - важнейший промышленный метод синтеза К. п. Он основан на том, что многие функциональные группы, связанные с кремнием (алкокси-, ацилокси-, аминогруппы, галогены), легко гидролизуются, например:

R2SiC2+2H2O→R2Si (OH)2+2HCI.

Образующиеся органосиланолы немедленно вступают в поликонденсацию с образованием циклических соединений

nR2Si (OH)2→[-SiR2-O-] n+H2O,

которые затем полимеризуются по катионному или анионному механизму. В зависимости от функциональности мономеров образуются полимеры линейной, разветвленной, лестничной или сшитой структуры.

2) Ионная Полимеризация циклических органосилоксанов; применяется для синтеза каучуков с молярной массой Кремнийорганические полимеры 600000 и более, а также лестничных и разветвленных полимеров.

3) Гетерофункциональная поликонденсация кремнийорганических соединений, содержащих различные функциональные группы, например:

nSiCl2+nR2Si (OCOCH3)2→Cl [-Si-О-SiR2- О-] nCOCH3+CH3COCl.

4) Реакция обменного разложения, при которой натриевые соли органосиланолов реагируют с органохлорсиланами или с галогенсодержащими солями металлов, например:

Метод нашёл практическое использование для синтеза полиметаллоорганосилоксанов.

Полиорганосилоксаны применяют в производстве различных электроизоляционных материалов (см. Кремнийорганические лаки, Компаунды полимерные), а также теплостойких пластмасс (в частности, стеклопластиков (См. Стеклопластики)) и кремнийорганических клеев (См. Кремнийорганические клеи). Широкое применение в технике находят Кремнийорганические каучуки и Кремнийорганические жидкости.

Полиэлементоорганосилоксаны. Введение атомов металлов в полимерную силоксановую цепь существенно меняет физические и химические свойства полимеров. Полиалюмофенилсилоксан и полититанфенилсилоксан, содержащие 1 атом металла на 3- 10 атомов кремния, не размягчаются при нагревании и имеют термомеханические кривые, типичные для сшитых полимеров, но сохраняют растворимость в органических растворителях. При введении пластификаторов (совола, минерального масла) эти полимеры приобретают текучесть при 120-150°С. Такое своеобразное сочетание свойств объясняется лестничной структурой макромолекул, обладающих большой жёсткостью и потому имеющих температуру плавления значительно выше температуры разложения.

Связь Si-O-Э в полиметаллоорганосилоксанах более полярна, чем связь Si-O-Si, вследствие чего эти полимеры легче разлагаются под действием воды в присутствии кислот, чем полиорганосилоксаны.

При уменьшении содержания гетероэлемента в цепи полиэлементоорганосилоксаны приближаются по свойствам к полиорганосилоксанам, но влияние гетероатома на свойства полимера ещё сказывается в том случае, когда на 100-200 атомов кремния приходится 1 гетероатом. Так, полибордиметилсилоксан с элементарным звеном

при n = 100-200 не вулканизуется перекисями в условиях, обычных для полидиметилсилоксанов, и сохраняет способность к самосклеиванию. Полибордиметилсилоксаны проявляют способность к упругим деформациям при кратковременном приложении нагрузки с одновременным сохранением пластических свойств при длительном действии нагрузки. При введении в полидиметилсилоксановые цепи титана в сочетании с некоторыми др. элементами, в частности с фосфором, термоокислительная стабильность полимера значительно возрастает. Это явление наблюдается уже при содержании 1 атома Ti на 100-300 атомов Si. Основные методы получения полиэлементоорганосилоксанов - реакция обменного разложения и гетерофункциональная поликонденсация (см. выше).

Практическое значение имеют: 1) полиборорганосилоксаны, которые применяют для изготовления клеев и самосклеивающихся резин; 2) полиалюмоорганосилоксаны - теплостойкие материалы в прецизионном литье металлов, катализаторы полимеризации при получении полиорганосилоксанов, а также плёнкообразующие для приготовления лаков, дающих термостойкие покрытия; 3) полититанорганосилоксаны - термостойкие материалы и герметики.

Полиорганосилазаны. Линейные полимеры - вязкие продукты, хорошо растворимые в органических растворителях, полимеры полициклической структуры - твёрдые бесцветные хрупкие вещества, имеющие температуру плавления от 150 до 320°С. Полиорганосилазаны устойчивы к действию воды в нейтральной и слабощелочной средах, но в кислой среде разлагаются; при нагревании со спиртом подвергаются алкоголизу.

Полимеры низкой молярной массы получают аммонолизом алкилхлорсиланов аммиаком или первичными аминами, например:

n (CH3)2SiCl2+(2n-1) NH3→H2N-Si (CH3)2[-NH-Si (CH3)2-] n-1NH2+2NH4CI.

Эта реакция сопровождается образованием циклических соединений. Полимеры с молярной массой до 5000 получают ионной полимеризацией органоциклосилазанов.

Полиорганосилазаны находят практическое применение как гидрофобизаторы для различных строительных материалов и тканей, а также в качестве отвердителей кремнийорганических полимеров, эпоксидных смол и компаундов полимерных (См. Компаунды полимерные).

Полиорганоалкиленсиланы. Эти полимеры обладают довольно высокой термостойкостью. Т. к. полимерная цепь полиорганоалкиленсиланов содержит только связи Si-C и С-С, они отличаются высокой гидролитической устойчивостью и стойкостью к действию щелочей и кислот.

Высокомолекулярные полимеры этого класса получают полимеризацией силациклоалканов в присутствии металлоорганических катализаторов или взаимодействием гидросиланов с дивинилсиланами в присутствии H2PtCl6, органических перекисей или третичных аминов. Полиорганоалкиленсиланы пока не нашли практического применения из-за относительно высокой стоимости соответствующих мономеров.

Прочие полимеры. Полиорганосиланы отличаются невысокой химической и термоокислительной стойкостью, т. к. связь Si-Si при действии щелочей или окислителей легко разрывается с образованием силанольной группировки Si-ОН. Поэтому практическое значение полиорганосиланов является проблематичным.

К. п. с органическими главными цепями макромолекул имеют меньшее практическое значение, чем, например, полиорганосилоксаны, т. к. они не обладают высокой теплостойкостью, присущей последним.

Лит.: Андрианов К. А., Полимеры с неорганическими главными цепями молекул, М., 1962; Бажант В., Хваловски В., Ратоуски И., Силиконы, [пер. с чеш.], М., 1960; Миле Р. Н., Льюис Ф. М., Силиконы, пер. с англ., М.,1964; Андрианов К. А., Теплостойкие кремнийорганические диэлектрики, М.- Л., 1964; Борисов С. Н., Воронков М. Г., Лукевиц Э. Я., Кремнеэлементоорга-нические соединения, [Л.], 1966; Андрианов К. А., Кремний, М., 1968 (Методы элементоорганической химии).

К. А. Андрианов.

КРЕМНИЙОРГАНИЧЕСКИЕ ПОЛИМЕРЫ         
(силиконы) , синтетические полимеры, в молекулах которых содержатся атомы кремния и углерода. Наибольшее значение в промышленности имеют полиорганосилоксаны (полисилоксаны), основная молекулярная цепь которых построена из чередующихся атомов кремния и кислорода, а атомы углерода входят в состав боковых (обрамляющих) групп, связанных с атомом кремния:НО[ - Si(R,R') - O - Si(R, R') - O - ]nH (R, R' - органические радикалы, напр. СН3 -). В зависимости от молекулярной массы кремнийорганические полимеры - вязкие бесцветные жидкости (кремнийорганические жидкости), твердые эластичные вещества (кремнийорганические каучуки) или хрупкие продукты (кремнийорганические пластики). Наиболее важные свойства кремнийорганических полимеров - хорошие диэлектрические характеристики, высокая термостойкость, гидрофобность, физиологическая инертность; некоторые каучуки морозостойки.
КРЕМНИЙОРГАНИЧЕСКИЕ ПОЛИМЕРЫ         
силиконы, представляют собой большую группу разнообразных жидкостей, каучуков и смол. Все они содержат кремний, связанный с органическим углеродом непосредственно или через кислород (полиорганосилоксаны).
Кремнийорганические полимерные жидкости не имеют запаха, сильно различаются по вязкости, температуре кипения и замерзания. Они очень термостойки и если горят, то с большим трудом, мало подвержены воздействию воды, большинства химических и физических факторов, разрушающих обычные органические материалы. В свою очередь, и они очень мало влияют или не влияют совсем на большинство таких органических материалов, как пластмассы, каучуки, краски или живые ткани и организмы. Кремнийорганические жидкости являются хорошими электроизоляционными материалами, прозрачны и обладают гидрофобными свойствами.
Такое редкое сочетание физических свойств позволяет использовать их в присадках для моторных масел, для изготовления различных смазочных веществ, гидравлических и демпферных жидкостей, используемых в широком диапазоне положительных и отрицательных температур, в кулинарии в составе варенья и джемов (для предупреждения вспенивания), в косметике, лакокрасочных покрытиях, для пропитки одежды и обивочных тканей, в пленках, покрывающих стенки сосудов для хранения некоторых жидких лекарств, чувствительных к контакту со стеклянной поверхностью, в составе мебельных и автомобильных полиролей, медицинском оборудовании, производстве асфальта и т.д. Тонкие пленки, оставляемые после обработки поверхности кремнийорганическими полиролями и пропитанными ими полировальными тканями, обладают исключительными пыле- и водоотталкивающими свойствами. Поверхность после такой обработки не смачивается водой и легко очищается от грязи.
Кремнийорганические полимерные жидкости используются и в чистом виде. Точность чувствительных приборов и устойчивость их к повреждениям часто повышаются, если в качестве амортизирующих жидкостей применяются кремнийорганические полимеры. Хорошо подобранная жидкость устраняет нежелательное дрожание и скачки стрелки, даже если прибор испытывает значительные вибрации. Кремнийорганические жидкости позволяют снять вибрацию маховиков в двигателях различных типов от автомобильных моторов до локомотивных дизелей. Кремнийорганические полимеры обладают хорошей сжимаемостью, что дает возможность применять их в жидкостных амортизаторах самолетных шасси.
Поскольку большинство органических материалов не прилипает к кремнийорганическим полимерам, кремнийорганические жидкости часто используют в виде пленок, чтобы облегчить отделение готового изделия от формы (при формовании резин или пластмасс и при литье металлов под давлением).
Термо- и водостойкость кремнийорганических жидкостей вместе с их отличными электроизоляционными свойствами и устойчивостью к пробою в электрических полях позволяет применять их в изоляции свечей авиадвигателей, в радио- и рентгеновском оборудовании, антеннах, переключателях, системах зажигания судовых двигателей, аккумуляторных батареях и электрических кабелях. Они также обеспечивают длительный срок и надежность работы конденсаторов и небольших трансформаторов, предназначенных для использования при высоких температурах.
Жидкости, в молекулах которых к каждому атому кремния присоединены одна метильная группа CH3 и один атом водорода H
нашли широкое применение для обработки (аппретирования) текстиля. Ткани, обработанные ими, имеют дорогой вид и приятны на ощупь, к тому же приобретают водоотталкивающие свойства. На них не остается пятен от водосодержащих жидкостей . молока, безалкогольных напитков, кофе и даже чернил. Более того, силиконовый аппрет не удаляется ни стиркой, ни химической чисткой. Эти преимущества чрезвычайно ценны для одежных и обивочных тканей.
См. также:

Wikipedia

Силиконы

Силико́ны (полиорганосилоксаны) — кислородосодержащие высокомолекулярные кремнийорганические соединения с химической формулой [R2SiO]n, где R = органическая группа (метильная, этильная или фенильная). Сейчас этого определения придерживаются уже крайне редко, и в «силиконы» объединяются также полиорганосилоксаны (например силиконовые масла типа ПМС, гидрофобизаторы типа ГКЖ или низкомолекулярные каучуки типа СКТН) и даже кремнийорганические мономеры (различные силаны), стирая различия между понятиями «силиконы» и «кремнийорганика».