МАССА - meaning and definition. What is МАССА
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:     

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is МАССА - definition

МЕРА ИНЕРТНОСТИ ТЕЛА
Инертная масса; Гравитационная масса; Релятивистская масса; Масса покоя; Активная гравитационная масса; Пассивная гравитационная масса; Тяжёлая масса; Искусственная масса
  • [[Тройская унция]], [[золото]]
  • Международного бюро мер и весов]] в [[Севр]]е
  • Прибор для измерения инертной массы в невесомости (массметр)]]
  • ''c''}}) равна модулю их 3-импульса
  • [[Весы]]

МАССА         
ы, ж.
1. мн. нет, физ. Величина, измеряющая количество вещества в теле, мера инерции тела по отноше-нию к действующей на него силе. Ускорение движения тела зависит от его массы.
2. Тестообразное бесформенное вещество, густая смесь. Расплавленная м. Сырковая м.
3. мн. нет, перен. О ком-чем-нибудь очень большом, сосредоточенном в одном месте. Темная м. здания.
4. мн. нет, чего, разг. Множество, большое количество. М. народу. М. книг.||Ср. МИРИАДЫ.
5. мн. Широкие круги населения, народ. Воля масс. Знания - в массы. Массовый - 1) свойственный массе людей (массовые выступления); 2) производимый в большом количестве (массовый выпуск товаров); 3) предназначенный для масс (книга издана массовым тиражом); 4) принадлежащий к мас-сам (массовый зритель).
Масса         
I Ма́сса (Massa)

Исаак (1587, Харлем, Нидерланды, - после мая 1635, там же или в Лиссе), голландский купец и резидент в России в 1614-34. Жил в Москве в 1601-09, 1612-34. Изучил русский язык и собрал много материалов по истории страны конца 16 - начала 17 веков и её географии. Около 1611 написал сочинение о событиях в России конца 16 - начала 17 веков - важный источник по истории крестьянской войны под предводительством И. И. Болотникова и других событий 1601-1609. Статьи М., посвященные истории и географии Сибири, были одним из первых сочинений о Сибири в западноевропейской литературе. М. опубликовал ряд карт России и отдельных её районов.

Соч.: Краткое известие о Московии в начале XVII в., М., 1937.

II Ма́сса (от лат. massa - глыба, масса)

1) большое количество, крупное скопление чего-либо. 2) Полужидкое или тестообразное, бесформенное вещество; смесь (полуфабрикат) в различных производствах (например, бумажная масса). 3) См. Масса в физике.

III Ма́сса

физическая величина, одна из основных характеристик материи, определяющая её инерционные и гравитационные свойства. Соответственно различают М. инертную и М. гравитационную (тяжёлую, тяготеющую).

Понятие М. было введено в механику И. Ньютоном. В классической механике Ньютона М. входит в определение импульса (количества движения (См. Количество движения)) тела: импульс p пропорционален скорости движения тела v,

p = mv . (1)

Коэффициент пропорциональности - постоянная для данного тела величина m - и есть М. тела. Эквивалентное определение М. получается из уравнения движения классической механики

f = ma . (2)

Здесь М. - коэффициент пропорциональности между действующей на тело силой f и вызываемым ею ускорением тела a. Определённая соотношениями (1) и (2) М. называется инерциальной массой, или инертной массой; она характеризует динамические свойства тела, является мерой инерции тела: при постоянной силе чем больше М. тела, тем меньшее ускорение оно приобретает, то есть тем медленнее меняется состояние его движения (тем больше его инерция).

Действуя на различные тела одной и той же силой и измеряя их ускорения, можно определить отношения М. этих тел: m1 : m2 : m3 ... = a1 : a2 : a3 ...; если одну из М. принять за единицу измерения, можно найти М. остальных тел.

В теории гравитации Ньютона М. выступает в другой форме - как источник поля тяготения. Каждое тело создаёт поле тяготения, пропорциональное М. тела (и испытывает воздействие поля тяготения, создаваемого другими телами, сила которого также пропорциональна М. тел). Это поле вызывает притяжение любого другого тела к данному телу с силой, определяемой Ньютона законом тяготения (См. Ньютона закон тяготения):

, (3)

где r - расстояние между телами, G - универсальная Гравитационная постоянная, a m1 и m2 - М. притягивающихся тел. Из формулы (3) легко получить формулу для Веса Р тела массы m в поле тяготения Земли:

Р = m · g . (4)

Здесь g = G · M / r2 - ускорение свободного падения в гравитационном поле Земли, а rR - радиусу Земли. М., определяемая соотношениями (3) и (4), называется гравитационной массой тела.

В принципе ниоткуда не следует, что М., создающая поле тяготения, определяет и инерцию того же тела. Однако опыт показал, что инертная М. и гравитационная М. пропорциональны друг другу (а при обычном выборе единиц измерения численно равны). Этот фундаментальный закон природы называется принципом эквивалентности. Его открытие связано с именем Г. Галилея (См. Галилей), установившего, что все тела на Земле падают с одинаковым ускорением. А. Эйнштейн положил этот принцип (им впервые сформулированный) в основу общей теории относительности (см. Тяготение). Экспериментально принцип эквивалентности установлен с очень большой точностью. Впервые (1890-1906) прецизионная проверка равенства инертной и гравитационной М. была произведена Л. Этвешем, который нашёл, что М. совпадают с ошибкой Масса 10-8. В 1959-64 американские физики Р. Дикке, Р. Кротков и П. Ролл уменьшили ошибку до 10-11, а в 1971 советские физики В. Б. Брагинский и В. И. Панов - до 10-12.

Принцип эквивалентности позволяет наиболее естественно определять М. тела Взвешиванием.

Первоначально М. рассматривалась (например, Ньютоном) как мера количества вещества. Такое определение имеет ясный смысл только для сравнения однородных тел, построенных из одного материала. Оно подчёркивает аддитивность М. - М. тела равна сумме М. его частей. М. однородного тела пропорциональна его объёму, поэтому можно ввести понятие плотности (См. Плотность) - М. единицы объёма тела.

В классической физике считалось, что М. тела не изменяется ни в каких процессах. Этому соответствовал закон сохранения М. (вещества), открытый М. В. Ломоносовым и А. Л. Лавуазье. В частности, этот закон утверждал, что в любой химической реакции сумма М. исходных компонентов равна сумме М. конечных компонентов.

Понятие М. приобрело более глубокий смысл в механике спец. теории относительности А. Эйнштейна (см. Относительности теория), рассматривающей движение тел (или частиц) с очень большими скоростями - сравнимыми со скоростью света с ≈ 3․1010 см/сек. В новой механике - она называется релятивистской механикой - связь между импульсом и скоростью частицы даётся соотношением:

(5)

При малых скоростях (v << с) это соотношение переходит в Ньютоново соотношение р = mv. Поэтому величину m0 называют массой покоя, а М. движущейся частицы m определяют как зависящий от скорости коэфф. пропорциональности между р и v:

(6)

Имея в виду, в частности, эту формулу, говорят, что М. частицы (тела) растет с увеличением её скорости. Такое релятивистское возрастание М. частицы по мере повышения её скорости необходимо учитывать при конструировании ускорителей заряженных частиц (См. Ускорители заряженных частиц) высоких энергий. М. покоя m0 (М. в системе отсчёта, связанной с частицей) является важнейшей внутренней характеристикой частицы. Все элементарные частицы обладают строго определёнными значениями m0, присущими данному сорту частиц.

Следует отметить, что в релятивистской механике определение М. из уравнения движения (2) не эквивалентно определению М. как коэффициент пропорциональности между импульсом и скоростью частицы, так как ускорение перестаёт быть параллельным вызвавшей его силе и М. получается зависящей от направления скорости частицы.

Согласно теории относительности, М. частицы m связана с её энергией Е соотношением:

(7)

М. покоя определяет внутреннюю энергию частицы - так называемую энергию покоя Е0 = m0c2. Таким образом, с М. всегда связана энергия (и наоборот). Поэтому не существует по отдельности (как в классической физике) закона сохранения М. и закона сохранения энергии - они слиты в единый закон сохранения полной (то есть включающей энергию покоя частиц) энергии. Приближённое разделение на закон сохранения энергии и закон сохранения М. возможно лишь в классической физике, когда скорости частиц малы (v << с) и не происходят процессы превращения частиц.

В релятивистской механике М. не является аддитивной характеристикой тела. Когда две частицы соединяются, образуя одно составное устойчивое состояние, то при этом выделяется избыток энергии (равный энергии связи (См. Энергия связи)) ΔЕ, который соответствует М. Δm = ΔЕ/с2. Поэтому М. составной частицы меньше суммы М. образующих его частиц на величину ΔЕ/с2 (так называемый Дефект масс). Этот эффект проявляется особенно сильно в ядерных реакциях (См. Ядерные реакции). Например, М. дейтрона (d) меньше суммы М. протона (p) и нейтрона (n); дефект М. Δm связан с энергией Еγ гамма-кванта (γ), рождающегося при образовании дейтрона: p + n → d + γ, Еγ = Δm · c2. Дефект М., возникающий при образовании составной частицы, отражает органическую связь М. и энергии.

Единицей М. в СГС системе единиц служит Грамм, а в Международной системе единиц (См. Международная система единиц) СИ - Килограмм. М. атомов и молекул обычно измеряется в атомных единицах массы (См. Атомные единицы массы). М. элементарных частиц принято выражать либо в единицах М. электрона me, либо в энергетических единицах, указывая энергию покоя соответствующей частицы. Так, М. электрона составляет 0,511 Мэв, М. протона - 1836,1 me, или 938,2 Мэв и т. д.

Природа М. - одна из важнейших нерешенных задач современной физики. Принято считать, что М. элементарной частицы определяется полями, которые с ней связаны (электромагнитным, ядерным и другими). Однако количественная теория М. ещё не создана. Не существует также теории, объясняющей, почему М. элементарных частиц образуют дискретный спектр значений, и тем более позволяющей определить этот спектр.

В астрофизике М. тела, создающего гравитационное поле, определяет так называемый Гравитационный радиус тела Rгр = 2GM/c2. Вследствие гравитационного притяжения никакое излучение, в том числе световое, не может выйти наружу, за поверхность тела с радиусом RRгр. Звёзды таких размеров будут невидимы; поэтому их назвали "чёрными дырами (См. Чёрная дыра)". Такие небесные тела должны играть важную роль во Вселенной.

Лит.: Джеммер М., Понятие массы в классической и современной физике, перевод с английского, М., 1967; Хайкин С. Э., физические основы механики, М., 1963; Элементарный учебник физики, под редакцией Г. С. Ландсберга, 7 изд., т. 1, М., 1971.

Я. А. Смородинский.

IV Ма́сса (Massa)

город в Центральной Италии, в Тоскане, близ берега Лигурийского моря (аванпорт Марина-ди-Масса). Административный центр провинции Масса-э-Каррара. 62,8 тысячи жителей (1971). Производство изделий из каррарского мрамора, добываемого в Апуанских Альпах. Машиностроение (энергетическое и химическое оборудование), небольшая металлургическая и химическая промышленность.

МАССА         
1. одна из основных физических характеристик материи, определяющая ее инертные и гравитационные свойства (спец.).
Единица массы.
2. тестообразное, бесформенное вещество, густая смесь.
Древесная м. (полуфабрикат для выделки бумаги). Расплавленная м. чугуна. Сырковая м.
3. широкие слои трудящегося населения.
Воля масс. Оторваться от масс(утратить связь с народом).
4. (разг.) множество, большое количество кого-чего-нибудь.
М. народу. Тратить массу сил.
5. совокупность чего-нибудь, а также что-нибудь большое, сосредоточенное в одном месте.
Воздушные массы. Темная м. здания.

Wikipedia

Масса

Ма́сса — скалярная физическая величина, определяющая инерционные и гравитационные свойства тел в ситуациях, когда их скорость намного меньше скорости света. В обыденной жизни и в физике XIX века масса синонимична весу.

Будучи тесно связанной с такими понятиями механики, как «энергия» и «импульс», масса проявляется в природе двумя качественно разными способами, что даёт основания для подразделения её на две разновидности:

  • инертная масса характеризует инертность тел и фигурирует в выражении второго закона Ньютона: если заданная сила в инерциальной системе отсчёта одинаково ускоряет различные тела, им приписывают одинаковую инертную массу;
  • гравитационная масса (пассивная и активная) показывает, с какой силой тело взаимодействует с внешними полями тяготения и какое гравитационное поле создаёт само это тело, она входит в закон всемирного тяготения и положена в основу измерения массы взвешиванием.

Однако экспериментально с высокой точностью установлена пропорциональность гравитационной и инертной масс, и подбором единиц они сделаны в теории равными друг другу. Поэтому, когда речь не идёт об особой «новой физике», принято оперировать термином «масса» и использовать обозначение m без пояснений.

Массой обладают все макроскопические объекты, бытовые предметы, а также большинство элементарных частиц (электроны, нейтроны и др.), хотя среди последних имеются и безмассовые (например, фотоны). Наличие массы у частиц объясняется их взаимодействием с полем Хиггса.

Examples of use of МАССА
1. Масса инструкций, масса бумажной переписки, масса бумажных документов.
2. От министерств, судов, от политиков масса упреков, масса угроз, масса давлений.
3. С нее сделана масса слепков, масса сцен из нее украдена, масса цитат заимствована.
4. Здесь масса галерей, салонов, масса возможностей реализовать себя.
5. Фигуры лошадей, глиняные копии колесниц и масса, масса всего другого.
What is МАССА - meaning and definition