Теплоэлектроцентраль - meaning and definition. What is Теплоэлектроцентраль
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is Теплоэлектроцентраль - definition

РАЗНОВИДНОСТЬ ЭЛЕКТРОСТАНЦИИ, ПРОИЗВОДЯЩАЯ ТАКЖЕ ТЕПЛОВУЮ ЭНЕРГИЮ
ТЭЦ
  • ТЭЦ-5]] в [[Харьков]]е
  • московской]] [[ТЭЦ-21]], одной из самых мощных тепловых электростанций Европы
  • ТЭЦ-5]] в [[Новосибирск]]е
  • ТЭЦ-25 в Москве
  • ТЭЦ-1 и ТЭЦ-2 в [[Северодвинск]]е

теплоэлектроцентраль         
ж.
Центральная тепловая электрическая станция, вырабатывающая одновременно электроэнергию и тепло (1*1), отпускаемое потребителю в виде пара и горячей воды.
Теплоэлектроцентраль         
(ТЭЦ)

Тепловая электростанция, вырабатывающая не только электрическую энергию, но и тепло, отпускаемое потребителям в виде пара и горячей воды. Использование в практических целях отработавшего тепла двигателей, вращающих электрические генераторы, является отличительной особенностью ТЭЦ и носит название Теплофикация. Комбинированное производство энергии двух видов способствует более экономному использованию топлива по сравнению с раздельной выработкой электроэнергии на конденсационных электростанциях (См. Конденсационная электростанция) (в СССР - ГРЭС) и тепловой энергии на местных котельных установках (См. Котельная установка). Замена местных котельных, нерационально использующих топливо и загрязняющих атмосферу городов и посёлков, централизованной системой теплоснабжения (См. Теплоснабжение) способствует не только значительной экономии топлива, но и повышению чистоты воздушного бассейна (См. Воздушный бассейн), улучшению санитарного состояния населённых мест.

Исходный источник энергии на ТЭЦ - органическое топливо (на паротурбинных и газотурбинных ТЭЦ) либо ядерное топливо (на планируемых атомных ТЭЦ). Преимущественное распространение имеют (1976) паротурбинные ТЭЦ на органическом топливе (рис. 1), являющиеся наряду с конденсационными электростанциями основным видом тепловых паротурбинных электростанций (См. Тепловая паротурбинная электростанция) (ТПЭС). Различают ТЭЦ промышленного типа - для снабжения теплом промышленных предприятий, и отопительного типа - для отопления жилых и общественных зданий, а также для снабжения их горячей водой. Тепло от промышленных ТЭЦ передаётся на расстояние до нескольких км (преимущественно в виде тепла пара), от отопительных - на расстояние до 20-30 км (в виде тепла горячей воды).

Основное оборудование паротурбинных ТЭЦ - турбоагрегаты, преобразующие энергию рабочего вещества (пара) в электрическую энергию, и Котлоагрегаты, вырабатывающие пар для турбин. В состав турбоагрегата входят Паровая турбина и Синхронный генератор. Паровые турбины, используемые на ТЭЦ, называются теплофикационными турбинами (См. Теплофикационная турбина) (ТТ). Среди них различают ТТ: с противодавлением, обычно равным 0,7-1,5 Мн/м2 (устанавливаются на ТЭЦ, снабжающих паром промышленные предприятия); с конденсацией и отборами пара под давлением 0,7- 1,5 Мн/м2 (для промышленных потребителей) и 0,05-0,25 Мн/м2 (для коммунально-бытовых потребителей); с конденсацией и отбором пара (отопительным) под давлением 0,05-0,25 Мн/м2.

Отработавшее тепло ТТ с противодавлением можно использовать полностью. Однако электрическая мощность, развиваемая такими турбинами, зависит непосредственно от величины тепловой нагрузки, и при отсутствии последней (как это, например, бывает в летнее время на отопительных ТЭЦ) они не вырабатывают электрической мощности. Поэтому ТТ с противодавлением применяют лишь при наличии достаточно равномерной тепловой нагрузки, обеспеченной на всё время действия ТЭЦ (то есть преимущественно на промышленных ТЭЦ).

У ТТ с конденсацией и отбором пара для снабжения теплом потребителей используется лишь пар отборов, а тепло конденсационного потока пара отдаётся в конденсаторе охлаждающей воде и теряется. Для сокращения потерь тепла такие ТТ большую часть времени должны работать по "тепловому" графику, то есть с минимальным "вентиляционным" пропуском пара в конденсатор. В СССР разработаны и строятся ТТ с конденсацией и отбором пара, в которых использование тепла конденсации предусмотрено: такие ТТ в условиях достаточной тепловой нагрузки могут работать как ТТ с противодавлением. ТТ с конденсацией и отбором пара получили на ТЭЦ преимущественное распространение как универсальные по возможным режимам работы. Их использование позволяет регулировать тепловую и электрическую нагрузки практически независимо; в частном случае, при пониженных тепловых нагрузках или при их отсутствии, ТЭЦ может работать по "электрическому" графику, с необходимой, полной или почти полной электрической мощностью.

Электрическую мощность теплофикационных турбоагрегатов (В отличие от конденсационных) выбирают предпочтительно не по заданной шкале мощностей, а по количеству расходуемого ими свежего пара. Поэтому в СССР крупные теплофикационные турбоагрегаты унифицированы именно по этому параметру. Так, турбоагрегаты Р-100 с противодавлением, ПТ-135 с промышленными и отопительными отборами и Т-175 с отопительным отбором имеют одинаковый расход свежего пара (около 750 т/ч), но различную электрическую мощность (соответственно 100, 135 и 175 Мвт). Котлоагрегаты, вырабатывающие пар для таких турбин, имеют одинаковую производительность (около 800 т/ч). Такая унификация позволяет использовать на одной ТЭЦ турбоагрегаты различных типов с одинаковым тепловым оборудованием котлов и турбин. В СССР унифицируются также котлоагрегаты, используемые для работы на ТПЭС различного назначения. Так, котлоагрегаты производительностью по пару 1000 т/ч используют для снабжения паром как конденсационных турбин на 300 Мвт, так и самых крупных в мире ТТ на 250 Мвт.

Давление свежего пара на ТЭЦ принято в СССР равным Теплоэлектроцентраль 13-14 Мн/м2 (преимущественно) и Теплоэлектроцентраль 24-25 Мн/м2 (на наиболее крупных теплофикационных энергоблоках - мощностью 250 Мвт). На ТЭЦ с давлением пара 13-14 Мн/м2, в отличие от ГРЭС, отсутствует промежуточный перегрев пара, так как на таких ТЭЦ он не даёт столь существенных технических и экономических преимуществ, как на ГРЭС. Энергоблоки мощностью 250 Мвт на ТЭЦ с отопительной нагрузкой выполняют с промежуточным перегревом пара.

Тепловая нагрузка на отопительных ТЭЦ неравномерна в течение года. В целях снижения затрат на основное энергетическое оборудование часть тепла (40-50\%) в периоды повышенной нагрузки подаётся потребителям от пиковых водогрейных котлов (См. Водогрейный котёл). Доля тепла, отпускаемого основным энергетическим оборудованием при наибольшей нагрузке, определяет величину коэффициента теплофикации ТЭЦ (обычно равного 0,5-0,6). Подобным же образом можно покрывать пики тепловой (паровой) промышленной нагрузки (около 10-20\% от максимальной) пиковыми паровыми котлами (См. Паровой котёл) невысокого давления. Отпуск тепла может осуществляться по двум схемам (рис. 2). При открытой схеме пар от турбин направляется непосредственно к потребителям. При закрытой схеме тепло к теплоносителю (пару, воде), транспортируемому к потребителям, подводится через теплообменники (паропаровые и пароводяные). Выбор схемы определяется в значительной мере водным режимом ТЭЦ.

На ТЭЦ используют твёрдое, жидкое или газообразное топливо. Вследствие большей близости ТЭЦ к населённым местам на них шире (по сравнению с ГРЭС) используют более ценное, меньше загрязняющее атмосферу твёрдыми выбросами топливо - мазут и газ. Для защиты воздушного бассейна от загрязнения твёрдыми частицами используют (как и на ГРЭС) золоуловители (см. Газов очистка), для рассеивания в атмосфере твёрдых частиц, окислов серы и азота сооружают дымовые трубы высотой до 200-250 м. ТЭЦ, сооружаемые вблизи потребителей тепла, обычно отстоят от источников водоснабжения (См. Водоснабжение) на значительном расстоянии. Поэтому на большинстве ТЭЦ применяют оборотную систему водоснабжения с искусственными охладителями - Градирнями. Прямоточное водоснабжение на ТЭЦ встречается редко.

На газотурбинных ТЭЦ в качестве привода электрических генераторов используют газовые турбины (См. Газовая турбина). Теплоснабжение потребителей осуществляется за счёт тепла, отбираемого при охлаждении воздуха, сжимаемого компрессорами газотурбинной установки, и тепла газов, отработавших в турбине. В качестве ТЭЦ могут работать также парогазовые электростанции (оснащенные паротурбинными и газотурбинными агрегатами) и атомные электростанции (См. Атомная электростанция).

Наибольшее распространение ТЭЦ получили в СССР. Первые теплопроводы были проложены от электростанций Ленинграда и Москвы (1924, 1928). С 30-х гг. началось проектирование и строительство ТЭЦ мощностью 100-200 Мвт. К концу 1940 мощность всех действующих ТЭЦ достигла 2 Гвт, годовой отпуск тепла - 108 Гдж, а протяжённость тепловых сетей (См. Тепловая сеть) - 650 км. В середине 70-х гг. суммарная электрическая мощность ТЭЦ составляет около 60 Гвт (при общей мощности электростанций Теплоэлектроцентраль 220 и тепловых электростанций Теплоэлектроцентраль 180 Гвт). Годовая выработка электроэнергии на ТЭЦ достигает 330 млрд. квт․ч, отпуск тепла - 4․109 Гдж; мощность отдельных новых ТЭЦ - 1,5-1,6 Гвт при часовом отпуске тепла до (1,6-2,0)․104 Гдж; удельная выработка электроэнергии при отпуске 1 Гдж тепла - 150-160 квт․ч. Удельный расход условного топлива на производство 1 квт․ч электроэнергии составляет в среднем 290 г (тогда как на ГРЭС - 370 г); наименьший среднегодовой удельный расход условного топлива на ТЭЦ около 200 г/квт․ч (на лучших ГРЭС - около 300 г/квт․ч). Такой пониженный (по сравнению с ГРЭС) удельный расход топлива объясняется комбинированным производством энергии двух видов с использованием тепла отработавшего пара. В СССР ТЭЦ дают экономию до 25 млн. т условного топлива в год (Теплоэлектроцентраль 11\% всего топлива, идущего на производство электроэнергии).

ТЭЦ - основное производственное звено в системе централизованного теплоснабжения. Строительство ТЭЦ - одно из основных направлений развития энергетического хозяйства в СССР и др. социалистических странах. В капиталистических странах ТЭЦ имеют ограниченное распространение (в основном промышленные ТЭЦ).

Лит.: Соколов Е. Я., Теплофикация и тепловые сети, М., 1975; Рыжкин В. Я., Тепловые электрические станции, М., 1976.

В. Я. Рыжкин.

Рис. 1. Общий вид теплоэлектроцентрали.

Рис. 2. Простейшие схемы теплоэлектроцентралей с различными турбинами и различными схемами отпуска пара: а - турбина с противодавлением и отбором пара, отпуск тепла - по открытой схеме; б - конденсационная турбина с отбором пара, отпуск тепла - по открытой и закрытой схемам; ПК - паровой котёл; ПП - пароперегреватель; ПТ - паровая турбина; Г - электрический генератор; К - конденсатор; П - регулируемый производственный отбор пара на технологические нужды промышленности; Т - регулируемый теплофикационный отбор на отопление; ТП - тепловой потребитель; ОТ - отопительная нагрузка; КН и ПН - конденсатный и питательный насосы; ПВД и ПНД - подогреватели высокого и низкого давления; Д - деаэратор; ПБ - бак питательной воды; СП - сетевой подогреватель; СН - сетевой насос.

ТЕПЛОЭЛЕКТРОЦЕНТРАЛЬ         
(ТЭЦ , теплофикационная электростанция), тепловая электростанция, вырабатывающая не только электрическую энергию, но и тепло, отпускаемое потребителям в виде пара и горячей воды.

Wikipedia

Теплоэлектроцентраль

Тѐплоэлѐктроцентра́ль (ТЭЦ) — разновидность тепловой электростанции, которая не только производит электроэнергию, но и является источником тепловой энергии в централизованных системах теплоснабжения (в виде пара и горячей воды, в том числе и для обеспечения горячего водоснабжения и отопления жилых и промышленных объектов).

Examples of use of Теплоэлектроцентраль
1. Действующую теплоэлектроцентраль планируется вывести из эксплуатации и демонтировать.
2. Лобачевского, 12 МУП "Йошкар- Олинская теплоэлектроцентраль N1"(425200, Республика Марий Эл, Медведевский район, п.
3. Интересно, что историю свою станция начала как теплоэлектроцентраль строящегося Невинномысского азотно-тукового завода.
4. Именно город обеспечит новую теплоэлектроцентраль всеми необходимыми внеплощадочными сетями и коммуникациями: газопроводом, сетями теплоснабжения и тепломагистралью.
5. Впервые за последние 15 лет Петербург получил новую теплоэлектроцентраль, причем созданную с использованием самых современных, в том числе экологических, технологий.
What is теплоэлектроцентраль - meaning and definition