Унитарная матрица - meaning and definition. What is Унитарная матрица
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is Унитарная матрица - definition


Унитарная матрица         

порядка n, Матрица с комплексными элементами, результат умножения которой на комплексно сопряжённую транспонированную матрицу равен единичной матрице: . Элементы У. м. связаны соотношениями:

(i, k = 1, 2,.., n).

У. М. порядка n образуют группу (См. Группа) относительно операции умножения. У. м. с действительными элементами является ортогональной матрицей. (См. Ортогональная матрица)

Унитарная матрица         
Унита́рная ма́трица — квадратная матрица с комплексными элементами, результат умножения которой на эрмитово сопряжённую равен единичной матрице: U^\dagger U = UU^\dagger = I.
Неособенная матрица         
КВАДРАТНАЯ МАТРИЦА, ОПРЕДЕЛИТЕЛЬ КОТОРОЙ ОТЛИЧЕН ОТ НУЛЯ
Обратимая матрица; Неособенная матрица

в математике, квадратная матрица А = IIaijII1n порядка n, определитель |А| которой не равен нулю. Всякая Н. м. имеет обратную матрицу. Н. м. определяет в n-мерном пространстве невырожденное Линейное преобразование. Переход от одной системы координат к другой также задаётся Н. м.

Wikipedia

Унитарная матрица

Унита́рная ма́трица — квадратная матрица с комплексными элементами, результат умножения которой на эрмитово сопряжённую равен единичной матрице: U U = U U = I {\displaystyle U^{\dagger }U=UU^{\dagger }=I} . Другими словами, матрица унитарна тогда и только тогда, когда существует обратная к ней матрица, удовлетворяющая условию U 1 = U {\displaystyle U^{-1}=U^{\dagger }} .

Унитарные матрицы обобщают понятие ортогональных матриц, элементы которых — только действительные числа, на матрицы с компле́ксными числами.

Следующие утверждения относительно данной квадратной матрицы A {\displaystyle A} являются эквивалентными:

  1. A {\displaystyle A}  — унитарна.
  2. A {\displaystyle A^{\dagger }}  — унитарна.
  3. Столбцы матрицы A {\displaystyle A} образуют ортонормированный базис в унитарном пространстве.
  4. Строки матрицы A {\displaystyle A} образуют ортонормированный базис в унитарном пространстве.