disclosure of sensitive infirmation - meaning and definition. What is disclosure of sensitive infirmation
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:     

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

What (who) is disclosure of sensitive infirmation - definition

Locality sensitive hashing

Level of Detail         
LOD () — приём в программировании трёхмерной графики, заключающийся в создании нескольких вариантов одного объекта с различными степенями детализации, которые переключаются в зависимости от удаления объекта от виртуальной камеры. Другой метод заключается в использовании одной основной, «грубо приближенной», модели и нескольких внешних надстроек к ней.
Out of Line Music         
Out of Line Music — немецкий звукозаписывающий лейбл, который выпускает различные музыкальные стили, включая электро, EBM, синти-поп.
The Sisters of Mercy         
  • 184px
  • 194px
  • 180px
  • 180px
  • 180px
  • 194px
  • left
  • 300 px
The Sisters of Mercy (IPA: ; ) — британская рок-группа, сформированная в 1977 году Эндрю Элдричем и Гари Марксом в Лидсе. Получив известность в андеграунде, коллектив в середине 1980-х годах смог добиться коммерческого успеха, который сопутствовал ему до начала 1990-х. С этого времени The Sisters of Mercy прекратила студийную работу и занимается только гастрольной деятельностью.

Wikipedia

Locality-sensitive hashing

Locality-sensitive hashing (LSH) — вероятностный метод понижения размерности многомерных данных. Основная идея состоит в таком подборе хеш-функций для некоторых измерений, чтобы похожие объекты с высокой степенью вероятности попадали в одну корзину. Один из способов борьбы с «проклятием размерности» при поиске и анализе многомерных данных, которое заключается в том, что при росте размерности исходных данных поиск по индексу ведёт себя хуже, чем последовательный просмотр. Метод позволяет строить структуру для быстрого приближённого (вероятностного) поиска n-мерных векторов, «похожих» на искомый шаблон.

LSH является одним из наиболее популярных на сегодняшний день приближённых алгоритмов поиска ближайших соседей (Approximate Nearest Neighbor, ANN). LSH в этом подходе отображает множество точек в высокоразмерном пространстве в множество ячеек, т. е. в хеш-таблицу. В отличие от традиционных хешей, LSH обладает свойством чувствительности к местоположению (locality-sensitive hash), благодаря чему способен помещать соседние точки в одну и ту же ячейку.

Преимуществами LSH являются: 1) простота использования; 2) строгая теория, подтверждающая хорошую производительность алгоритма; 3) LSH совместим с любой нормой L p {\displaystyle L_{p}} при 0 < p 2 {\displaystyle 0<p\leq 2} . LSH можно использовать с евклидовой метрикой и с манхэттенским расстоянием. Существуют также варианты для расстояния Хэмминга и косинусного коэффициента.

What is Level of Detail - meaning and definition