"Embedding isotopy" is a noun phrase, where "embedding" is a gerund noun derived from the verb "embed," and "isotopy" is a noun.
/ɪmˈbɛdɪŋ ˈaɪsəˌtoʊpi/
Embedding isotopy refers to a concept in topology, specifically in the field of mathematics. It deals with the deformation of embeddings of manifolds, allowing one to study their properties in a more flexible manner. The phrase is often used in mathematical contexts, particularly in advanced study, research papers, and lectures.
In terms of frequency, "embedding isotopy" is a specialized term more common in written contexts, especially in academic literature, than in everyday oral speech.
Embedding isotopy is essential for understanding the properties of high-dimensional manifolds.
"Эмбеддинг изотопия" является основополагающим для понимания свойств многообразий высокой размерности.
The study of embedding isotopy can reveal fascinating characteristics of geometric structures.
Изучение "эмбеддинг изотопии" может раскрыть увлекательные характеристики геометрических структур.
Researchers are now focusing on the implications of embedding isotopy in modern topology.
Исследователи сейчас сосредоточены на последствиях "эмбеддинг изотопии" в современной топологии.
While "embedding isotopy" is quite specific and does not typically appear in idiomatic expressions, the components of the phrase can be a part of various mathematical discussions or expressions. Here are some general expressions involving "embedding":
To embed theory into practice, mathematicians often refer to embedding isotopy.
Чтобы внедрить теорию в практику, математики часто ссылаются на "эмбеддинг изотопию".
Understanding how to manipulate embedding isotopy can lead to new discoveries in topology.
Понимание того, как манипулировать "эмбеддинг изотопией", может привести к новым открытиям в топологии.
The technique of embedding requires a solid grasp of embedding isotopy fundamentals.
Техника эмбеддинга требует твердого понимания основ "эмбеддинг изотопии".
The word "embedding" is derived from the verb "embed," which comes from the Middle English "embeden," meaning "to fix firmly." The term "isotopy" comes from the Greek "isotopos," where "iso-" means "equal" and "topos" means "place," referring to the concept of being in the same place or location in a topological sense.
Synonyms: - Isotopism - Embedding theory
Antonyms: - Non-embedding - Deformation
Embedding isotopy is a specialized term in mathematics, most often encountered in academic and technical discussions regarding topology and geometric structures.