Noun Phrase
/fɪkst pɔɪnt kəmˌpjuːˈteɪʃən/
"Fixed point computation" refers to a type of numerical computation where values are represented as fixed-point numbers. Unlike floating-point computations, which can represent a wider range of values but with potential precision issues, fixed-point computations allocate a fixed number of digits before and after the decimal point. This method is commonly used in embedded systems, digital signal processing, and situations where performance and predictability in resource-constrained environments are critical.
"Фиксированная точка вычисления имеет решающее значение для обеспечения предсказуемой работы в встроенных системах."
"Many digital signal processing applications rely on fixed point computation for efficient resource use."
"Во многие приложения цифровой обработки сигналов полагаются на фиксированную точку вычисления для эффективного использования ресурсов."
"Learning about fixed point computation can significantly improve a programmer's ability to write performance-sensitive code."
The term "fixed point" is used in several idiomatic expressions, especially in mathematical or computing contexts:
"Нахождение фиксированной точки в функции может быть важно для решения определённых уравнений."
"The convergence to a fixed point often indicates stability in the algorithm."
"Сходимость к фиксированной точке часто указывает на стабильность алгоритма."
"In optimization problems, fixed points represent feasible solutions."
"В задачах оптимизации фиксированные точки представляют собой допустимые решения."
"Fixed point theorems provide a foundation for many mathematical proofs."
The term "fixed point" derives from mathematical terminology where "fixed" denotes something that does not change and "point" refers to a specific value or location on a number line. "Computation" comes from Latin "computatio," meaning to calculate or count.
Synonyms: - Constant value computation - Whole number computation
Antonyms: - Floating point computation - Approximate computation
In conclusion, "fixed point computation" plays a significant role in various technological applications, especially in specialized fields like embedded systems and digital processing. Its understanding can empower developers and engineers to create robust solutions that meet performance requirements.