The phrase "generalized maximum likelihood" functions primarily as a noun in statistical and mathematical contexts.
/gɛnəˌraɪzd ˈmæksɪməm ˈlaɪklihʊd/
"Generalized maximum likelihood" refers to a broad statistical method used for estimating parameters in statistical models by maximizing the likelihood function. This technique allows for the incorporation of more complex models compared to traditional maximum likelihood approaches, making it particularly useful in various fields such as econometrics, machine learning, and bioinformatics.
Example Sentences: 1. The researchers applied the generalized maximum likelihood method to estimate the model parameters accurately. - Исследователи применили метод обобщенного максимального правдоподобия для точной оценки параметров модели.
Обобщенное максимальное правдоподобие предоставляет надежную основу для работы с различными типами распределений данных.
The effectiveness of generalized maximum likelihood in high-dimensional data analysis has been widely acknowledged in recent studies.
The phrase "generalized maximum likelihood" is specific to technical jargon in statistics and does not commonly appear in idiomatic expressions. However, the concept of "maximum likelihood" can be found in broader discussions about statistical estimation and modeling.
Example Sentences with Similar Expressions: 1. The principle of maximum likelihood is often used to obtain estimates that are statistically efficient. - Принцип максимального правдоподобия часто используется для получения оценок, которые статистически эффективны.
Максимизация функции правдоподобия имеет решающее значение для получения значимых выводов из больших наборов данных.
Understanding maximum likelihood estimation can significantly improve your capabilities in statistical modeling.
The term "maximum likelihood" originates from the field of statistics. "Maximum" comes from the Latin word 'maximus', meaning "greatest," while "likelihood" derives from the Old English 'lice', meaning "manner or way" and 'hood', a suffix indicating a state of being. The combination reflects the concept of identifying the most plausible parameters under a given statistical model.
Synonyms: - Maximum likelihood estimation - Likelihood-based inference
Antonyms: - Minimum likelihood (if considering the idea of minimizing rather than maximizing) - Least squares method (as an alternative estimation technique)