Noun
/pɔɪnt baɪ pɔɪnt kənˈvɜrdʒəns/
Point-by-point convergence refers to a type of convergence of sequences or functions where convergence is examined at each individual point in a specific context, such as in analysis or topology. In mathematical terms, a sequence of functions converges point-by-point to a limit function if, at each point in the domain, the sequence of function values converges to the value of the limit function.
This term is frequently used in written contexts, particularly in mathematical literature, research papers, and educational materials. While it can occasionally appear in oral speech among professionals or academics discussing convergence in mathematics or related fields, it's predominantly a term found in written expressions.
While "point-by-point convergence" itself is not commonly found in idiomatic expressions, the concept of convergence can be applied in various mathematical and scientific idioms.
После многих обсуждений произошла конвергенция идей о том, как улучшить проект.
Converging paths
Два студента обнаружили, что их пути сходятся, когда они оба решили изучать экологическую науку.
At the point of convergence
Ученые встретились в точке схождения, где их исследования пересекались значительным образом.
Converging opinions
The term "convergence" comes from the Latin word "convergere," which means "to incline together." The prefix "point-by-point" indicates a methodical, detailed approach, suggesting that the convergence is being analyzed at each individual point. This combination reflects the careful and precise nature of mathematical analysis.
Synonyms: - Pointwise convergence - Sequential convergence
Antonyms: - Divergence - Discrepancy