The term "upper semicontinuous collection" is a mathematical concept used primarily in topology and set theory. An upper semicontinuous collection of sets refers to a family of sets that exhibits a certain continuity property; specifically, for any point, the collection does not increase as you move "up" in terms of inclusion of points in the sets. This concept is important in various branches of mathematical analysis and is typically used in written contexts, especially in academic papers and textbooks.
Frequency of Use: It is a specialized term more likely encountered in written academic or research-oriented contexts rather than in everyday oral speech.
Исследователь продемонстрировал, что верхняя полуконтинуальная коллекция множеств может быть использована для установления сходимости в определённых функциях пространства.
In this topology, the upper semicontinuous collection provides a way to understand limit points more effectively.
В этой топологии верхняя полуконтинуальная коллекция предоставляет способ лучше понять предельные точки.
The proof relies heavily on the properties of the upper semicontinuous collection, which play a crucial role in ensuring the desired outcomes.
While "upper semicontinuous collection" does not commonly appear in idiomatic expressions, mathematical discourse often includes phrases that imply continuity and boundedness. Here are some idiomatic expressions related to continuity:
Нам нужен верхний полуконтинуальный подход, чтобы держать всё под контролем и обеспечить стабильность в этом проекте.
"To draw the line"
Определяя нашу верхнюю полуконтинуальную коллекцию, мы должны провести грань на чрезмерной инклюзивности.
"To keep it balanced"
The term is derived from: - Upper: Middle English "uper", from Old English "ūpere", meaning 'above'. - Semicontinuous: A combination of "semi" (from Latin "semi-", meaning 'half') and "continuous" (from Latin "continuus", meaning 'uninterrupted'). - Collection: French "collection", from Latin "collectio", meaning 'a gathering'.
This term is quite specific and technical, hence synonyms and antonyms are used within a similarly formal mathematical context.