En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:
En álgebra lineal, la eliminación de Gauss-Jordan, llamada así en honor de Carl Friedrich Gauss y Wilhelm Jordan, es un algoritmo que se usa para determinar la inversa de una matriz y las soluciones de un sistema de ecuaciones lineales.[1] Un sistema de ecuaciones se resuelve por el método de Gauss cuando se obtienen sus soluciones mediante la reducción del sistema dado a otro equivalente en el que cada ecuación tiene una incógnita menos que la anterior. El método de Gauss transforma la matriz de coeficientes en una matriz triangular superior. El método de Gauss-Jordan continúa el proceso de transformación hasta obtener una matriz diagonal.
Para realizar la reducción de filas en una matriz, se utiliza una secuencia de operaciones elementales de fila para modificar la matriz hasta que la esquina inferior izquierda de la matriz se llene de ceros, tanto como sea posible. Hay tres tipos de operaciones elementales de fila:
Utilizando estas operaciones, una matriz siempre se puede transformar en una matriz triangular superior, y de hecho en una que esté en forma escalonada. Una vez que todos los coeficientes principales (la entrada más a la izquierda distinta de cero en cada fila) son 1, y cada columna que contiene un coeficiente principal tiene ceros en otros lugares, se dice que la matriz está en forma escalonada reducida. Esta forma final es única; en otras palabras, es independiente de la secuencia de operaciones de fila utilizadas. Por ejemplo, en la siguiente secuencia de operaciones de fila (donde dos operaciones elementales en filas diferentes se realizan en el primer y tercer paso), la tercera y cuarta matrices son las que están en forma escalonada, y la matriz final es la única forma escalonada reducida.
El uso de operaciones de fila para convertir una matriz en forma escalonada reducida se denomina a veces eliminación de Gauss-Jordan. En este caso, el término eliminación de Gauss se refiere al proceso hasta que ha alcanzado su forma triangular superior, o forma escalonada (no reducida). Por razones computacionales, cuando se resuelven sistemas de ecuaciones lineales, a veces es preferible detener las operaciones de fila antes de que la matriz esté completamente reducida.