En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:
El polilogaritmo (también conocido como función de Jonquière) es una función especial definida por la siguiente serie:
Esta no es, en general, una función elemental, aunque esté relacionada con la función logarítmica. La definición dada arriba es válida para todo número complejo s y z tal que . Para obtener el polilogaritmo en el resto del plano complejo, hay que extender la definición mediante una continuación analítica.
El caso especial nos da la relación de estas funciones con el logaritmo () mientras que los casos especiales y se denominan dilogaritmo (o función de Spence) y trilogaritmo respectivamente. El nombre de la función proviene del hecho de que podría ser definida como integrales iteradas de la misma función:
así, el dilogaritmo es una integral del logaritmo, el trilogaritmo del dilogaritmo y así continuamente. Para valores enteros negativos de s, el polilogaritmo es una función racional.
El polilogaritmo también aparece en la forma cerrada de la integral de la distribución de Fermi-Dirac y de la distribución de Bose-Einstein, denominándose a veces como la integral de Fermi-Dirac o la integral de Bose-Einstein. El polilogaritmo no debe confundirse con las funciones polilogarítmicas ni con la función logaritmo integral, la cual tiene una notación similar.