overflow (underflow) test conditions - traducción al árabe
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

overflow (underflow) test conditions - traducción al árabe

THEOREM
Dirichlet's conditions; Dirichlet Fourier series conditions; Dirichlet conditions; Dirichlet-Jordan test

overflow (underflow) test conditions      
ظروف اختبار الفيض.
ظروف اختبار الفي      

overflow (underflow) test conditions

underflow         
CONDITION IN PROGRAMMING WHERE A CALCULATED VALUE IS TOO SMALL TO BE REPRESENTED IN MEMORY
Underflow
دون الحجم المقررة ، القحط الحسابى ، غيض

Definición

underflow
<programming> (or "floating point underflow", "floating underflow", after "overflow") A condition that can occur when the result of a floating-point operation would be smaller in magnitude (closer to zero, either positive or negative) than the smallest quantity representable. Underflow is actually (negative) overflow of the exponent of the floating point quantity. For example, an eight-bit {twos complement} exponent can represent multipliers of 2^-128 to 2^127. A result less than 2^-128 would cause underflow. Depending on the processor, the programming language and the run-time system, underflow may set a status bit, raise an exception or generate a hardware interrupt or some combination of these effects. Alternatively, it may just be ignored and zero substituted for the unrepresentable value, though this might lead to a later divide by zero error which cannot be so easily ignored. (2006-11-09)

Wikipedia

Dirichlet–Jordan test

In mathematics, the Dirichlet–Jordan test gives sufficient conditions for a real-valued, periodic function f to be equal to the sum of its Fourier series at a point of continuity. Moreover, the behavior of the Fourier series at points of discontinuity is determined as well (it is the midpoint of the values of the discontinuity). It is one of many conditions for the convergence of Fourier series.

The original test was established by Peter Gustav Lejeune Dirichlet in 1829, for piecewise monotone functions. It was extended in the late 19th century by Camille Jordan to functions of bounded variation (any function of bounded variation is the difference of two increasing functions).