mousetrap$50596$ - traducción al griego
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

mousetrap$50596$ - traducción al griego

GAME IN COMBINATORICS
Cayley's Mousetrap; Cayley mousetrap

mousetrap      
n. φάκα, ποντικοπαγίδα

Definición

mousetrap
¦ noun
1. a trap for catching mice (traditionally baited with cheese).
2. Brit. informal cheese of poor quality.
¦ verb N. Amer. informal trick (someone) into doing something.

Wikipedia

Cayley's mousetrap

Mousetrap is the name of a game introduced by the English mathematician Arthur Cayley. In the game, cards numbered 1 {\displaystyle 1} through n {\displaystyle n} ("say thirteen" in Cayley's original article) are shuffled to place them in some random permutation and are arranged in a circle with their faces up. Then, starting with the first card, the player begins counting 1 , 2 , 3 , . . . {\displaystyle 1,2,3,...} and moving to the next card as the count is incremented. If at any point the player's current count matches the number on the card currently being pointed to, that card is removed from the circle and the player starts all over at 1 {\displaystyle 1} on the next card. If the player ever removes all of the cards from the permutation in this manner, then the player wins. If the player reaches the count n + 1 {\displaystyle n+1} and cards still remain, then the game is lost.

In order for at least one card to be removed, the initial permutation of the cards must not be a derangement. However, this is not a sufficient condition for winning, because it does not take into account subsequent removals. The number of ways the cards can be arranged such that the entire game is won, for n = 1, 2, ..., are

1, 1, 2, 6, 15, 84, 330, 1812, 9978, 65503, ... (sequence A007709 in the OEIS).

For example with four cards, the probability of winning is 0.25, but this reduces as the number of cards increases, and with thirteen cards it is about 0.0046.