hyperinaccessible cardinal - traducción al ruso
DICLIB.COM
Herramientas lingüísticas IA
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

hyperinaccessible cardinal - traducción al ruso

FINITE OR INFINITE NUMBER THAT MEASURES CARDINALITY (SIZE) OF SETS
Cardinal numbers; Cardinal arithmetic; Cardinal Number; Cardinal addition; Cardinal multiplication; Cardinal exponentiation; Cardinal (mathematics); Cardinal scale; Cardinal sum; Aleph exponentiation
  • [[Aleph-null]], the smallest infinite cardinal
  • A [[bijective function]], ''f'': ''X'' → ''Y'', from set ''X'' to set ''Y '' demonstrates that the sets have the same cardinality, in this case equal to the cardinal number 4.

hyperinaccessible cardinal      

математика

гипернедостижимое кардинальное число

cardinal sum         

математика

кардинальная сумма

cardinal numbers         
cardinal numbers количественные числительные

Definición

Серый кардинал
о том, кто обладает большой властью, но не занимает соответствующего высокого положения и остается в тени. Оборот связан с именем монаха - отца Жозефа, доверенного лица, вдохновителя и участника интриг кардинала Ришелье. Сжечь свои корабли

Wikipedia

Cardinal number

In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. The transfinite cardinal numbers, often denoted using the Hebrew symbol {\displaystyle \aleph } (aleph) followed by a subscript, describe the sizes of infinite sets.

Cardinality is defined in terms of bijective functions. Two sets have the same cardinality if, and only if, there is a one-to-one correspondence (bijection) between the elements of the two sets. In the case of finite sets, this agrees with the intuitive notion of size. In the case of infinite sets, the behavior is more complex. A fundamental theorem due to Georg Cantor shows that it is possible for infinite sets to have different cardinalities, and in particular the cardinality of the set of real numbers is greater than the cardinality of the set of natural numbers. It is also possible for a proper subset of an infinite set to have the same cardinality as the original set—something that cannot happen with proper subsets of finite sets.

There is a transfinite sequence of cardinal numbers:

0 , 1 , 2 , 3 , , n , ; 0 , 1 , 2 , , α , .   {\displaystyle 0,1,2,3,\ldots ,n,\ldots ;\aleph _{0},\aleph _{1},\aleph _{2},\ldots ,\aleph _{\alpha },\ldots .\ }

This sequence starts with the natural numbers including zero (finite cardinals), which are followed by the aleph numbers (infinite cardinals of well-ordered sets). The aleph numbers are indexed by ordinal numbers. Under the assumption of the axiom of choice, this transfinite sequence includes every cardinal number. If one rejects that axiom, the situation is more complicated, with additional infinite cardinals that are not alephs.

Cardinality is studied for its own sake as part of set theory. It is also a tool used in branches of mathematics including model theory, combinatorics, abstract algebra and mathematical analysis. In category theory, the cardinal numbers form a skeleton of the category of sets.

¿Cómo se dice hyperinaccessible cardinal en Ruso? Traducción de &#39hyperinaccessible cardinal&#39 a