En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:
[eidʒ]
общая лексика
возраст
определять возраст
период
эпоха
старость
стареть
изменяться во времени
совершеннолетие
поколение
век
изменение свойств в результате старения
выдерживать (в определенных условиях)
вылеживаться
подвергать старению
химия
окисляться
строительное дело
продолжительность
срок службы
нефтегазовая промышленность
век, эра
возраст (геологический)
продолжительность работы
продолжительность службы
срок службы (оборудования, инструмента)
окисляться (о топливах и маслах при хранении)
терять активность (о катализаторе)
существительное
[eidʒ]
общая лексика
возраст
продолжительность
срок жизни
обыкн. [разг.] долгий срок
вечность
старость
дряхлость
в грам. знач. прил. возрастной (преим. в статистике)
юриспруденция
совершеннолетие
геология
период
эра
история
век
эпоха
возвышенное выражение
поколение
техника
срок службы (машины и т. п.)
карточный термин
игрок
сидящий слева от сдающего (покер)
синоним
глагол
общая лексика
стареть
стариться
состарить
старить
техника
подвергать старению
специальный термин
выдерживать
подвергать искусственному старению
вызревать
электротехника
тренировать
синоним
In statistics, a pivotal quantity or pivot is a function of observations and unobservable parameters such that the function's probability distribution does not depend on the unknown parameters (including nuisance parameters). A pivot quantity need not be a statistic—the function and its value can depend on the parameters of the model, but its distribution must not. If it is a statistic, then it is known as an ancillary statistic.
More formally, let be a random sample from a distribution that depends on a parameter (or vector of parameters) . Let be a random variable whose distribution is the same for all . Then is called a pivotal quantity (or simply a pivot).
Pivotal quantities are commonly used for normalization to allow data from different data sets to be compared. It is relatively easy to construct pivots for location and scale parameters: for the former we form differences so that location cancels, for the latter ratios so that scale cancels.
Pivotal quantities are fundamental to the construction of test statistics, as they allow the statistic to not depend on parameters – for example, Student's t-statistic is for a normal distribution with unknown variance (and mean). They also provide one method of constructing confidence intervals, and the use of pivotal quantities improves performance of the bootstrap. In the form of ancillary statistics, they can be used to construct frequentist prediction intervals (predictive confidence intervals).