En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:
Ingrese cualquier texto. La traducción se realizará mediante tecnología de inteligencia artificial.
Esta herramienta le permite refinar el texto que redactó en un idioma no nativo.
También produce excelentes resultados al procesar textos traducidos por inteligencia artificial.
Esta herramienta permite crear un resumen del texto en cualquier idioma.
Ingrese un pequeño fragmento de texto y la inteligencia artificial lo ampliará.
Ingrese cualquier texto. La voz será generada por inteligencia artificial.
Ingrese un verbo en cualquier idioma. El sistema generará una tabla de conjugación del verbo en todos los tiempos posibles.
Ingrese cualquier pregunta de forma libre en cualquier idioma.
Puede introducir consultas detalladas que constan de varias frases. Por ejemplo:
математика
фактор-акцептор
математика
фактор-топология
общая лексика
отображение отождествления или идентифицирующее отображение
In single-variable calculus, the difference quotient is usually the name for the expression
which when taken to the limit as h approaches 0 gives the derivative of the function f. The name of the expression stems from the fact that it is the quotient of the difference of values of the function by the difference of the corresponding values of its argument (the latter is (x + h) - x = h in this case). The difference quotient is a measure of the average rate of change of the function over an interval (in this case, an interval of length h).: 237 The limit of the difference quotient (i.e., the derivative) is thus the instantaneous rate of change.
By a slight change in notation (and viewpoint), for an interval [a, b], the difference quotient
is called the mean (or average) value of the derivative of f over the interval [a, b]. This name is justified by the mean value theorem, which states that for a differentiable function f, its derivative f′ reaches its mean value at some point in the interval. Geometrically, this difference quotient measures the slope of the secant line passing through the points with coordinates (a, f(a)) and (b, f(b)).
Difference quotients are used as approximations in numerical differentiation, but they have also been subject of criticism in this application.
Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h.
The difference quotient is sometimes also called the Newton quotient (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat).