quotient loop - traducción al ruso
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

quotient loop - traducción al ruso

EXPRESSION IN CALCULUS
Newton's quotient; Newton's difference quotient; Difference Quotient; Newton quotient; Fermat's difference quotient

quotient loop      

математика

фактор-лупа

self-loop         
AN EDGE IN A NODE-LINK GRAPH THAT CONNECTS A VERTEX TO ITSELF
Self-loop; Graph loop

математика

петля (в графе)

quotient topology         
  • For example, <math>[0,1]/\{0,1\}</math> is homeomorphic to the circle <math>S^1.</math>
  • frameless
TOPOLOGICAL SPACE CONSISTING OF EQUIVALENCE CLASSES OF POINTS IN ANOTHER TOPOLOGICAL SPACE
Quotient topology; Quotient (topology); Quotient map; Identification space; Identification map; Quotient topological space; Gluing (topology); Identifiation map; Hereditarily quotient map

математика

фактор-топология

Wikipedia

Difference quotient

In single-variable calculus, the difference quotient is usually the name for the expression

f ( x + h ) f ( x ) h {\displaystyle {\frac {f(x+h)-f(x)}{h}}}

which when taken to the limit as h approaches 0 gives the derivative of the function f. The name of the expression stems from the fact that it is the quotient of the difference of values of the function by the difference of the corresponding values of its argument (the latter is (x + h) - x = h in this case). The difference quotient is a measure of the average rate of change of the function over an interval (in this case, an interval of length h).: 237  The limit of the difference quotient (i.e., the derivative) is thus the instantaneous rate of change.

By a slight change in notation (and viewpoint), for an interval [a, b], the difference quotient

f ( b ) f ( a ) b a {\displaystyle {\frac {f(b)-f(a)}{b-a}}}

is called the mean (or average) value of the derivative of f over the interval [a, b]. This name is justified by the mean value theorem, which states that for a differentiable function f, its derivative f′ reaches its mean value at some point in the interval. Geometrically, this difference quotient measures the slope of the secant line passing through the points with coordinates (a, f(a)) and (b, f(b)).

Difference quotients are used as approximations in numerical differentiation, but they have also been subject of criticism in this application.

Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h.

The difference quotient is sometimes also called the Newton quotient (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat).

¿Cómo se dice quotient loop en Ruso? Traducción de &#39quotient loop&#39 al Ruso