vanishing function - traducción al ruso
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

vanishing function - traducción al ruso

ELEMENT OF THE DOMAIN WHERE FUNCTION'S VALUE IS ZERO
Zero set; X-intercept; Vanishing function; Polynomial root; Real zero; Cozero set; Roots of a Function; Real root; Root of a polynomial; Zeros of a function; Vanish (mathematics); Root of a function; Zeroes of a function; Horizontal intercept; Polynomial roots; Roots of a function; Roots of a polynomial

vanishing function         

математика

обращающаяся в нуль функция

X-intercept         

общая лексика

отсекаемый

отсекаемый отрезок

real root         

общая лексика

действительный корень

Definición

Vanishing
·- ·adj & ·noun from Vanish, v.
II. Vanishing ·p.pr. & ·vb.n. of Vanish.

Wikipedia

Zero of a function

In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f {\displaystyle f} , is a member x {\displaystyle x} of the domain of f {\displaystyle f} such that f ( x ) {\displaystyle f(x)} vanishes at x {\displaystyle x} ; that is, the function f {\displaystyle f} attains the value of 0 at x {\displaystyle x} , or equivalently, x {\displaystyle x} is the solution to the equation f ( x ) = 0 {\displaystyle f(x)=0} . A "zero" of a function is thus an input value that produces an output of 0.

A root of a polynomial is a zero of the corresponding polynomial function. The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. For example, the polynomial f {\displaystyle f} of degree two, defined by f ( x ) = x 2 5 x + 6 {\displaystyle f(x)=x^{2}-5x+6} has the two roots (or zeros) that are 2 and 3.

If the function maps real numbers to real numbers, then its zeros are the x {\displaystyle x} -coordinates of the points where its graph meets the x-axis. An alternative name for such a point ( x , 0 ) {\displaystyle (x,0)} in this context is an x {\displaystyle x} -intercept.

¿Cómo se dice vanishing function en Ruso? Traducción de &#39vanishing function&#39 al Ruso