AMD$500480$ - significado y definición. Qué es AMD$500480$
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es AMD$500480$ - definición

POWER SAVING TECHNOLOGY
Power Now!; Powernow; Amd powernow; Amd Powernow; Amd PowerNow; AMD Powernow; AMD powernow; AMD Powernow!; AMD powernow!; Amd powernow!; Amd Powernow!; Amd PowerNow!; AMD PowerNow!

AMD 700 chipset series         
  • A motherboard using the 790GX Northbridge chipset
  • AMD Southbridge SB710
SET OF CHIPSETS DESIGNED BY ATI
RD790; RD700 chipset series; AMD 7-Series Chipsets; AMD 790FX; AMD 790X; AMD 790GX; AMD 740; AMD 790G; AMD 790V; AMD RX780H; AMD 740G; AMD 740V; AMD 780G; AMD Overdrive; AMD OverDrive; AMD 770
The AMD 700 chipset series (also called as AMD 7-Series Chipsets) is a set of chipsets designed by ATI for AMD Phenom processors to be sold under the AMD brand. Several members were launched in the end of 2007 and the first half of 2008, others launched throughout the rest of 2008.
AMD 29000         
RISC-BASED MICROPROCESSOR DESIGN
Am29000; AMD 29000; 29K; Amd29k; AMD29k; AMD 29k; A29K; AM29000
<processor> A RISC microprocessor descended from the Berkley RISC design. Like the SPARC design that was introduced shortly afterward, the 29000 has a large {register set} split into local and global sets. But though it was introduced before the SPARC, it has a more elegant method of register management. The 29000 has 64 global registers, in comparison to the SPARC's eight. In addition, the 29000 allows variable sized windows allocated from the 128 register stack cache. The current window or stack frame is indicated by a stack pointer, a pointer to the caller's frame is stored in the current frame, like in an ordinary stack (directly supporting stack languages like C, a CISC-like philosophy). Spills and fills occur only at the ends of the cache, and registers are saved/loaded from the memory stack. This allows variable window sizes, from 1 to 128 registers. This flexibility, plus the large set of global registers, makes register allocation easier than in SPARC. There is no special condition code register - any general register is used instead, allowing several condition codes to be retained, though this sometimes makes code more complex. An instruction prefetch buffer (using burst mode) ensures a steady instruction stream. To reduce delays caused by a branch to another stream, the first four new instructions are cached and next time a cached branch (up to sixteen) is taken, the cache supplies instructions during the initial memory access delay. Registers aren't saved during interrupts, allowing the interrupt routine to determine whether the overhead is worthwhile. In addition, a form of register access control is provided. All registers can be protected, in blocks of 4, from access. These features make the 29000 useful for embedded applications, which is where most of these processors are used, allowing it the claim to be "the most popular RISC processor". The 29000 also includes an MMU and support for the AMD 29027 FPU. (1995-06-19)
AMD K5         
  • AMD K5 PR150 (5k86) die shot
MICROARCHITECTURE
Amd k5; 5k86; K5 (microarchitecture); Am5k86; AMD 5k86
The K5 is AMD's first x86 processor to be developed entirely in-house. Introduced in March 1996, its primary competition was Intel's Pentium microprocessor.

Wikipedia

PowerNow!

AMD PowerNow! is AMD's dynamic frequency scaling and power saving technology for laptop processors. The CPU's clock speed and VCore are automatically decreased when the computer is under low load or idle, to save battery power, reduce heat and noise. The lifetime of the CPU is also extended because of reduced electromigration, which varies exponentially with temperature.

The technology is a concept similar to Intel's SpeedStep technology. The adaptation of PowerNow! for AMD's desktop CPUs is called Cool'n'Quiet. Newer Opterons also use an adaptation of PowerNow! called Optimized Power Management.

AMD has supplied and supported drivers for its PowerNow! technology that work on Windows 98, ME, NT, and 2000.