DG-55 - significado y definición. Qué es DG-55
Display virtual keyboard interface

Qué (quién) es DG-55 - definición

Dg category; Dg-category; DG category; DG-category

DG Flugzeugbau DG-1000         
GERMAN TWO-SEAT MOTOR GLIDER, 2000
Glaser-Dirks DG-1000; DG Flugzeugbau DG-1000S; DG Flugzeugbau DG-1000T; DG Flugzeugbau DG-1000M; DG Flugzeugbau TG-16; DG-1000; Akaflieg Karlsruhe DG-1000J Turbine; DG Flugzeugbau TG-16A; DG-1000J
The DG Flugzeugbau DG-1000 is a glider of the Two Seater Class built by DG Flugzeugbau. It has a retractable engine and propeller.
Glaser-Dirks DG-100         
GERMAN SINGLE-SEAT GLIDER, 1974
DG 100; Gläser-Dirks DG-100; Gläser-Dirks DG-101; DG-100; Glaser-Dirks DG-100G; Glaser-Dirks DG-101G; Glaser-Dirks DG-101; Glaser-Dirks DG-101 Elan; DG-100 Elan; DG-100 Club Elan; DG-101 Elan
The Glaser-Dirks DG-100 is the first sailplane manufactured by Glaser-Dirks. It is a standard class glider designed by Wilhelm Dirks in 1974 and developed from the Akaflieg Darmstadt D-38.
Glaser-Dirks DG-300         
GERMAN SINGLE-SEAT GLIDER, 1983
Glaser-Dirks DG-303; DG-300; Gläser-Dirks DG-300; Gläser-Dirks DG-303; Glaser-Dirks DG-303 Elan; DG-300 Elan; DG-300 Club Elan; DG-300 Elan Acro; DG-303 Elan
The Glaser-Dirks DG-300 is a Standard Class single-seat high-performance glider built of glass-reinforced plastic. The DG-300 was designed by Wilhelm Dirks and manufactured by Glaser-Dirks Flugzeugbau's Slovenian partner company Elan (company).

Wikipedia

Differential graded category

In mathematics, especially homological algebra, a differential graded category, often shortened to dg-category or DG category, is a category whose morphism sets are endowed with the additional structure of a differential graded Z {\displaystyle \mathbb {Z} } -module.

In detail, this means that Hom ( A , B ) {\displaystyle \operatorname {Hom} (A,B)} , the morphisms from any object A to another object B of the category is a direct sum

n Z Hom n ( A , B ) {\displaystyle \bigoplus _{n\in \mathbb {Z} }\operatorname {Hom} _{n}(A,B)}

and there is a differential d on this graded group, i.e., for each n there is a linear map

d : Hom n ( A , B ) Hom n + 1 ( A , B ) {\displaystyle d\colon \operatorname {Hom} _{n}(A,B)\rightarrow \operatorname {Hom} _{n+1}(A,B)} ,

which has to satisfy d d = 0 {\displaystyle d\circ d=0} . This is equivalent to saying that Hom ( A , B ) {\displaystyle \operatorname {Hom} (A,B)} is a cochain complex. Furthermore, the composition of morphisms Hom ( A , B ) Hom ( B , C ) Hom ( A , C ) {\displaystyle \operatorname {Hom} (A,B)\otimes \operatorname {Hom} (B,C)\rightarrow \operatorname {Hom} (A,C)} is required to be a map of complexes, and for all objects A of the category, one requires d ( id A ) = 0 {\displaystyle d(\operatorname {id} _{A})=0} .