P-adic modular form - significado y definición. Qué es P-adic modular form
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es P-adic modular form - definición


P-adic modular form         
In mathematics, a p-adic modular form is a p-adic analog of a modular form, with coefficients that are p-adic numbers rather than complex numbers. introduced p-adic modular forms as limits of ordinary modular forms, and shortly afterwards gave a geometric and more general definition.
Modular form         
ANALYTIC FUNCTION ON THE UPPER HALF-PLANE WITH A CERTAIN BEHAVIOR UNDER THE MODULAR GROUP
Modular forms; Elliptic modular form; Modular function; Level of a modular form; Weight of a modular form; Nebentypus character; Nebentype character; Q-expansion; Modular form and modular function; Modular function and modular form
In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the group action of the modular group, and also satisfying a growth condition. The theory of modular forms therefore belongs to complex analysis but the main importance of the theory has traditionally been in its connections with number theory.
P-adic L-function         
In mathematics, a p-adic zeta function, or more generally a p-adic L-function, is a function analogous to the Riemann zeta function, or more general L-functions, but whose domain and target are p-adic (where p is a prime number). For example, the domain could be the p-adic integers Zp, a profinite p-group, or a p-adic family of Galois representations, and the image could be the p-adic numbers Qp or its algebraic closure.