Q-Gaussian process - significado y definición. Qué es Q-Gaussian process
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Q-Gaussian process - definición


Q-Gaussian process         
q-Gaussian processes are deformations of the usual Gaussian distribution. There are several different versions of this; here we treat a multivariate deformation, also addressed as q-Gaussian process, arising from free probability theory and corresponding to deformations of the canonical commutation relations.
Gaussian process         
  • Autocorrelation of a random lacunary Fourier series
  • Gaussian Process Regression (prediction) with a squared exponential kernel. Left plot are draws from the prior function distribution. Middle are draws from the posterior. Right is mean prediction with one standard deviation shaded.
  • The effect of choosing different kernels on the prior function distribution of the Gaussian process. Left is a squared exponential kernel. Middle is Brownian. Right is quadratic.
STOCHASTIC PROCESS SUCH THAT EVERY FINITE COLLECTION OF RANDOM VARIABLES HAS A MULTIVARIATE NORMAL DISTRIBUTION
Gaussian stochastic process; Gaussian processes; Gaussian Process; Gaussian Processes; Applications of Gaussian processes; Bayesian Kernel Ridge Regression
In probability theory and statistics, a Gaussian process is a stochastic process (a collection of random variables indexed by time or space), such that every finite collection of those random variables has a multivariate normal distribution, i.e.
Gaussian binomial coefficient         
FAMILY OF POLYNOMIALS
Q-binomial coefficient; Q-binomial; Gaussian coefficient; Gaussian binomial; Q-binomial theorem; Gaussian polynomial; Gaussian polynomials; Gaussian binomial coefficients; Q-binomial coefficients
In mathematics, the Gaussian binomial coefficients (also called Gaussian coefficients, Gaussian polynomials, or q-binomial coefficients) are q-analogs of the binomial coefficients. The Gaussian binomial coefficient, written as \binom nk_q or \begin{bmatrix}n\\ k\end{bmatrix}_q, is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over a finite field with q elements.