average sampling - significado y definición. Qué es average sampling
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es average sampling - definición

DEVICE FOR MONITORING DRINKING WATER
Water Sampling Stations; Water sampling stations

Moving average         
TYPE OF STATISTICAL MEASURE OVER SUBSETS OF A DATASET
Rolling average; Exponential Moving Average; Weighted moving average; Simple moving average; EWMA; Exponentially weighted moving average; Exponential moving average; Moving average (finance); Running average; Moving average (technical analysis); Exponential average; Moving Annual Total; Smavg; Moving annual total; Moving mean; Rolling mean; Temporal average; Temporal averaging; Time average; Time averaging; Weighted rolling average; Moving Average; 7-day rolling average
In statistics, a moving average (rolling average or running average) is a calculation to analyze data points by creating a series of averages of different subsets of the full data set. It is also called a moving mean (MM)Hydrologic Variability of the Cosumnes River Floodplain (Booth et al.
Snowball sampling         
NONPROBABILITY SAMPLING TECHNIQUE
Snowball sample; Respondent-driven sampling; Snowball method; Snowballed sample
In sociology and statistics research, snowball sampling (or chain sampling, chain-referral sampling, referral sampling (accessed 8 May 2011).Snowball Sampling, Changing Minds.
Nyquist Theorem         
  • the sampled sequences are identical}}, even though the original continuous pre-sampled functions are not. If these were audio signals, <math>x(t)</math> and <math>x_A(t)</math> might not sound the same. But their samples (taken at rate ''f''<sub>s</sub>) are identical and would lead to identical reproduced sounds; thus ''x''<sub>A</sub>(''t'') is an alias of ''x''(''t'') at this sample rate.
  • The samples of two sine waves can be identical when at least one of them is at a frequency above half the sample rate.
  • A family of sinusoids at the critical frequency, all having the same sample sequences of alternating +1 and –1. That is, they all are aliases of each other, even though their frequency is not above half the sample rate.
  • Properly sampled image
  • Subsampled image showing a [[Moiré pattern]]
  • The figure on the left shows a function (in gray/black) being sampled and reconstructed (in gold) at steadily increasing sample-densities, while the figure on the right shows the frequency spectrum of the gray/black function, which does not change. The highest frequency in the spectrum is ½ the width of the entire spectrum. The width of the steadily-increasing pink shading is equal to the sample-rate. When it encompasses the entire frequency spectrum it is twice as large as the highest frequency, and that is when the reconstructed waveform matches the sampled one.
  • Spectrum, ''X<sub>s</sub>''(''f''), of a properly sampled bandlimited signal (blue) and the adjacent DTFT images (green) that do not overlap. A ''brick-wall'' low-pass filter, ''H''(''f''), removes the images, leaves the original spectrum, ''X''(''f''), and recovers the original signal from its samples.
  • x}}.
THEOREM
Nyquist theorem; Shannon sampling theorem; Nyquist sampling theorem; Nyquist's theorem; Shannon-Nyquist sampling theorem; Nyquist-Shannon Sampling Theorem; Nyqvist-Shannon sampling theorem; Sampling theorem; Nyquist Sampling Theorem; Nyquist-Shannon sampling theorem; Nyquist–Shannon theorem; Nyquist–Shannon Theorem; Nyquist Theorem; Shannon-Nyquist theorem; Nyquist sampling; Nyquist's law; Nyquist law; Coherent sampling; Nyqvist limit; Raabe condition; Nyquist-Shannon Theorem; Nyquist-Shannon theorem; Nyquist noise theorem; Shannon–Nyquist theorem; Kotelnikov-Shannon theorem; Kotelnikov–Shannon theorem; Nyquist-Shannon; Kotelnikov theorem; Nyquist's sampling theorem; Sampling Theorem; Nyquist Shannon theorem; Nyquist–Shannon–Kotelnikov sampling theorem; Whittaker–Shannon–Kotelnikov sampling theorem; Whittaker–Nyquist–Kotelnikov–Shannon sampling theorem; Nyquist-Shannon-Kotelnikov sampling theorem; Whittaker-Shannon-Kotelnikov sampling theorem; Whittaker-Nyquist-Kotelnikov-Shannon sampling theorem; Cardinal theorem of interpolation; WKS sampling theorem; Whittaker–Kotelnikow–Shannon sampling theorem; Whittaker-Kotelnikow-Shannon sampling theorem; Nyquist–Shannon–Kotelnikov; Whittaker–Shannon–Kotelnikov; Whittaker–Nyquist–Kotelnikov–Shannon; Nyquist-Shannon-Kotelnikov; Whittaker-Shannon-Kotelnikov; Whittaker-Nyquist-Kotelnikov-Shannon; Whittaker–Shannon sampling theorem; Whittaker–Nyquist–Shannon sampling theorem; Whittaker-Nyquist-Shannon sampling theorem; Whittaker-Shannon sampling theorem
<communications> A theorem stating that when an analogue waveform is digitised, only the frequencies in the waveform below half the sampling frequency will be recorded. In order to reconstruct (interpolate) a signal from a sequence of samples, sufficient samples must be recorded to capture the peaks and troughs of the original waveform. If a waveform is sampled at less than twice its frequency the reconstructed waveform will effectively contribute only noise. This phenomenon is called "aliasing" (the high frequencies are "under an alias"). This is why the best digital audio is sampled at 44,000 Hz - twice the average upper limit of human hearing. The Nyquist Theorem is not specific to digitised signals (represented by discrete amplitude levels) but applies to any sampled signal (represented by discrete time values), not just sound. {Nyquist (http://geocities.com/bioelectrochemistry/nyquist.htm)} (the man, somewhat inaccurate). (2003-10-21)

Wikipedia

Water sampling station

To enhance water quality monitoring in a drinking water network, water sampling stations are installed at various points along the network's route. These sampling stations are typically positioned at street level, where they connect to a local water main, and are designed as enclosed, secured boxes containing a small sink and spigot to aid in sample collection. Collected samples are analyzed for bacteria, chlorine levels, pH, inorganic and organic pollutants, turbidity, odor and many other water quality indicators.

In the United States, water sampling stations aid in public infrastructural safety in regards to water quality monitoring and help municipalities comply with federal and state drinking water regulations. New York City has 965 sampling stations that are distributed based on population density, water pressure zones, proximity to water mains and accessibility. The stations rise about 4½ feet above the ground and are made of heavy cast iron. Using these stations, the New York City Department of Environmental Protection (DEP) collects more than 1,200 water samples per month from up to 546 locations.