conjunctive normal form - significado y definición. Qué es conjunctive normal form
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es conjunctive normal form - definición

CONCEPT IN BOOLEAN LOGIC
3-CNF; Clausal normal form; Clause normal form; Conjunctive Normal Form; Clausal form; Product-of-sums expression; Conjunctive normal formula

Conjunctive Normal Form         
<logic> (CNF) A logical formula consisting of a conjunction of disjunctions of terms where no disjunction contains a conjunction. Such a formula might also be described as a product of sums. E.g. the CNF of (A and B) or C is (A or C) and (B or C). Contrast Disjunctive Normal Form. (1995-12-10)
Conjunctive normal form         
In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs. As a canonical normal form, it is useful in automated theorem proving and circuit theory.
Third normal form         
NORMALIZING A DATABASE DESIGN TO REDUCE THE DUPLICATION OF DATA AND ENSURE REFERENTIAL INTEGRITY
3NF; Third Normal Form; 3rd normal form
Third normal form (3NF) is a database schema design approach for relational databases which uses normalizing principles to reduce the duplication of data, avoid data anomalies, ensure referential integrity, and simplify data management. It was defined in 1971 by Edgar F.

Wikipedia

Conjunctive normal form

In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs. As a canonical normal form, it is useful in automated theorem proving and circuit theory.

All conjunctions of literals and all disjunctions of literals are in CNF, as they can be seen as conjunctions of one-literal clauses and conjunctions of a single clause, respectively. As in the disjunctive normal form (DNF), the only propositional connectives a formula in CNF can contain are and, or, and not. The not operator can only be used as part of a literal, which means that it can only precede a propositional variable or a predicate symbol.

In automated theorem proving, the notion "clausal normal form" is often used in a narrower sense, meaning a particular representation of a CNF formula as a set of sets of literals.