covariance - significado y definición. Qué es covariance
DICLIB.COM
Herramientas lingüísticas IA
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es covariance - definición

MEASURE OF THE JOINT VARIABILITY OF TWO RANDOM VARIABLES
Co-variance; Covariation; Covary; Covariation principle

covariance         
[k??'v?:r??ns]
¦ noun
1. Mathematics the property of a function of retaining its form when the variables are linearly transformed.
2. Statistics the mean value of the product of the deviations of two variates from their respective means.
Covariance         
In probability theory and statistics, covariance is a measure of the joint variability of two random variables. If the greater values of one variable mainly correspond with the greater values of the other variable, and the same holds for the lesser values (that is, the variables tend to show similar behavior), the covariance is positive.
Covariance (disambiguation)         
WIKIMEDIA DISAMBIGUATION PAGE
Covariant
In mathematics and physics, covariance is a measure of how much two variables change together, and may refer to:

Wikipedia

Covariance

In probability theory and statistics, covariance is a measure of the joint variability of two random variables. If the greater values of one variable mainly correspond with the greater values of the other variable, and the same holds for the lesser values (that is, the variables tend to show similar behavior), the covariance is positive. In the opposite case, when the greater values of one variable mainly correspond to the fewer values of the other, (that is, the variables tend to show opposite behavior), the covariance is negative. The sign of the covariance, therefore, shows the tendency in the linear relationship between the variables. The magnitude of the covariance is the geometric mean of the variances that are in-common for the two random variables. The correlation coefficient normalizes the covariance by dividing by the geometric mean of the total variances for the two random variables.

A distinction must be made between (1) the covariance of two random variables, which is a population parameter that can be seen as a property of the joint probability distribution, and (2) the sample covariance, which in addition to serving as a descriptor of the sample, also serves as an estimated value of the population parameter.