crystal lattice - significado y definición. Qué es crystal lattice
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es crystal lattice - definición

AN INFINITE ARRAY OF DISCRETE POINTS IN THREE DIMENSIONAL SPACE GENERATED BY A SET OF DISCRETE TRANSLATION OPERATIONS
Crystal lattice; Bravais lattices; Bravais Lattices; Crystalline lattice; Space lattice; Crystallographic lattice; Bravais flock; Crystal lattices
  • Oblique
  • Oblique
  • Oblique
  • Oblique
  • Oblique
  • Monoclinic, centered
  • Cubic, body-centered
  • Cubic, face-centered
  • Cubic, simple
  • Hexagonal
  • The seven lattice systems and their Bravais lattices in three dimensions
  • Monoclinic, simple
  • Orthorhombic, base-centered
  • Orthorhombic, body-centered
  • Orthorhombic, face-centered
  • Orthorhombic, simple
  • Rhombohedral
  • Tetragonal, body-centered
  • Tetragonal, simple
  • Triclinic

crystal lattice         
¦ noun the symmetrical three-dimensional arrangement of atoms inside a crystal.
Bravais lattice         
In geometry and crystallography, a Bravais lattice, named after , is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by
Crystal system         
CLASS OF SPACE GROUPS, LATTICES, POINT GROUPS, OR CRYSTALS
Crystallographic system; Crystal Systems; Crystal systems; Bravais law; Bravais Law; Unknown crystal system; Crystal family; Lattice system; Crystal families; Lattice type; Lattice systems
In crystallography, a crystal system is a set of point groups (a group of geometric symmetries with at least one fixed point). A lattice system is a set of Bravais lattices.

Wikipedia

Bravais lattice

In geometry and crystallography, a Bravais lattice, named after Auguste Bravais (1850), is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by

R = n 1 a 1 + n 2 a 2 + n 3 a 3 , {\displaystyle \mathbf {R} =n_{1}\mathbf {a} _{1}+n_{2}\mathbf {a} _{2}+n_{3}\mathbf {a} _{3},}

where the ni are any integers, and ai are primitive translation vectors, or primitive vectors, which lie in different directions (not necessarily mutually perpendicular) and span the lattice. The choice of primitive vectors for a given Bravais lattice is not unique. A fundamental aspect of any Bravais lattice is that, for any choice of direction, the lattice appears exactly the same from each of the discrete lattice points when looking in that chosen direction.

The Bravais lattice concept is used to formally define a crystalline arrangement and its (finite) frontiers. A crystal is made up of one or more atoms, called the basis or motif, at each lattice point. The basis may consist of atoms, molecules, or polymer strings of solid matter, and the lattice provides the locations of the basis.

Two Bravais lattices are often considered equivalent if they have isomorphic symmetry groups. In this sense, there are 5 possible Bravais lattices in 2-dimensional space and 14 possible Bravais lattices in 3-dimensional space. The 14 possible symmetry groups of Bravais lattices are 14 of the 230 space groups. In the context of the space group classification, the Bravais lattices are also called Bravais classes, Bravais arithmetic classes, or Bravais flocks.

Ejemplos de uso de crystal lattice
1. "Qantir is a very important excavation." Common glass is made mostly of silicon dioxide –– the same compound as quartz or sand –– that has been melted and cooled rapidly so the molecules remain amorphous instead of forming a crystal lattice.