cyclotomic realm - significado y definición. Qué es cyclotomic realm
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es cyclotomic realm - definición

IRREDUCIBLE POLYNOMIAL WHOSE ROOTS ARE NTH ROOTS OF UNITY
Cyclotonic polynomial; Cyclotomic polynomials

Cyclotomic field         
FIELD EXTENSION OF THE RATIONAL NUMBERS BY A PRIMITIVE ROOT OF UNITY
Cyclotomic; Cyclotomic fields
In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers.
The Statutes of the Realm         
COLLECTION OF LAWS THROUGH 1714 IN ENGLAND AND GREAT BRITAIN
Statutes of the Realm
The Statutes of the Realm is an authoritative collection of Acts of the Parliament of England from the earliest times to the Union of the Parliaments in 1707, and Acts of the Parliament of Great Britain passed up to the death of Queen Anne in 1714. It was published between 1810 and 1825 by the Record Commission as a series of 9 volumes, with volume IV split into two separately bound parts, together with volumes containing an Alphabetical Index and a Chronological Index.
Cyclotomic polynomial         
In mathematics, the nth cyclotomic polynomial, for any positive integer n, is the unique irreducible polynomial with integer coefficients that is a divisor of x^n-1 and is not a divisor of x^k-1 for any Its roots are all nth primitive roots of unity

Wikipedia

Cyclotomic polynomial

In mathematics, the nth cyclotomic polynomial, for any positive integer n, is the unique irreducible polynomial with integer coefficients that is a divisor of x n 1 {\displaystyle x^{n}-1} and is not a divisor of x k 1 {\displaystyle x^{k}-1} for any k < n. Its roots are all nth primitive roots of unity e 2 i π k n {\displaystyle e^{2i\pi {\frac {k}{n}}}} , where k runs over the positive integers not greater than n and coprime to n (and i is the imaginary unit). In other words, the nth cyclotomic polynomial is equal to

Φ n ( x ) = gcd ( k , n ) = 1 1 k n ( x e 2 i π k n ) . {\displaystyle \Phi _{n}(x)=\prod _{\stackrel {1\leq k\leq n}{\gcd(k,n)=1}}\left(x-e^{2i\pi {\frac {k}{n}}}\right).}

It may also be defined as the monic polynomial with integer coefficients that is the minimal polynomial over the field of the rational numbers of any primitive nth-root of unity ( e 2 i π / n {\displaystyle e^{2i\pi /n}} is an example of such a root).

An important relation linking cyclotomic polynomials and primitive roots of unity is

d n Φ d ( x ) = x n 1 , {\displaystyle \prod _{d\mid n}\Phi _{d}(x)=x^{n}-1,}

showing that x is a root of x n 1 {\displaystyle x^{n}-1} if and only if it is a dth primitive root of unity for some d that divides n.