first-order - significado y definición. Qué es first-order
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es first-order - definición


first-order         
WIKIMEDIA DISAMBIGUATION PAGE
First order; First-order (disambiguation)
Not higher-order. (1995-03-06)
first-order         
WIKIMEDIA DISAMBIGUATION PAGE
First order; First-order (disambiguation)
¦ adjective
1. most fundamental; primary.
2. denoting mathematical equations involving only the first power of the independent variable or only the first derivative of a function.
first-order logic         
  • 1=((a ∨ ¬b) ∧  b) → a}}
COLLECTION OF FORMAL SYSTEMS USED IN MATHEMATICS, PHILOSOPHY, LINGUISTICS, AND COMPUTER SCIENCE
First-order predicate calculus; First-order predicate logic; Predicate logic; Predicate calculus; First order logic; Predicate Calculus; First Order Logic; First order language; First-order language; Quantification theory; First order predicate calculus; Predicate logic (Philosophy); First order logic with equality; 1st order logic; First Order Language; FOPL; First order predicate logic; Polyadic predicate calculus; Predicate logic (philosophy); First-order logic with equality; First-Order Logic; First-order sentence; Quantification calculus; Satisfaction relation; Predicate Logic; Many-sorted first-order logic; First-order Peano arithmetic; FOPC; Lower Predicate Calculus; Tarskian semantics; Classical predicate logic; First-order-logic; Equational first-order logic; Semantics of first-order logic; Deductive systems for first-order logic
<language, logic> The language describing the truth of mathematical formulas. Formulas describe properties of terms and have a truth value. The following are atomic formulas: True False p(t1,..tn) where t1,..,tn are terms and p is a predicate. If F1, F2 and F3 are formulas and v is a variable then the following are compound formulas: F1 ^ F2 conjunction - true if both F1 and F2 are true, F1 V F2 disjunction - true if either or both are true, F1 => F2 implication - true if F1 is false or F2 is true, F1 is the antecedent, F2 is the consequent (sometimes written with a thin arrow), F1 <= F2 true if F1 is true or F2 is false, F1 == F2 true if F1 and F2 are both true or both false (normally written with a three line equivalence symbol) first-order logicF1 negation - true if f1 is false (normally written as a dash '-' with a shorter vertical line hanging from its right hand end). For all v . F universal quantification - true if F is true for all values of v (normally written with an inverted A). Exists v . F existential quantification - true if there exists some value of v for which F is true. (Normally written with a reversed E). The operators ^ V => <= == first-order logic are called connectives. "For all" and "Exists" are quantifiers whose scope is F. A term is a mathematical expression involving numbers, operators, functions and variables. The "order" of a logic specifies what entities "For all" and "Exists" may quantify over. First-order logic can only quantify over sets of atomic propositions. (E.g. For all p . p => p). Second-order logic can quantify over functions on propositions, and higher-order logic can quantify over any type of entity. The sets over which quantifiers operate are usually implicit but can be deduced from well-formedness constraints. In first-order logic quantifiers always range over ALL the elements of the domain of discourse. By contrast, second-order logic allows one to quantify over subsets. ["The Realm of First-Order Logic", Jon Barwise, Handbook of Mathematical Logic (Barwise, ed., North Holland, NYC, 1977)]. (2005-12-27)

Wikipedia

First-order
In mathematics and other formal sciences, first-order or first order most often means either:
Ejemplos de uso de first-order
1. This is political and diplomatic incompetence of the first order.
2. He‘s a dear old–fashioned chauvinist of the first order.
3. Iraq presents a policy quandary of the first order.
4. The first order of business was stoking a water pipe.
5. "The first order of Bill‘s care has been to stop the bleeding and save his life.