idempotent$506027$ - significado y definición. Qué es idempotent$506027$
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es idempotent$506027$ - definición

Splitting idempotents; Split idempotent; Idempotent completion

Idempotent (ring theory)         
ELEMENT X OF A RING SUCH THAT X² = X
Abelian ring; Centrally primitive; Central idempotent element; Central idempotent; Idempotent element (ring theory); Idempotent endomorphism; Idempotents
In ring theory, a branch of abstract algebra, an idempotent element or simply idempotent of a ring is an element a such that .See Hazewinkel et al.
Idempotence         
  • A typical crosswalk button is an example of an idempotent system
PROPERTY OF CERTAIN OPERATIONS IN MATHEMATICS AND COMPUTER SCIENCE, THAT CAN BE APPLIED MULTIPLE TIMES WITHOUT CHANGING THE RESULT BEYOND THE INITIAL APPLICATION
Idempotent function; Idempotency; Idempotence (computer science); Idempotent; Idempotent (software); Indempotency; Indempotent; Idempotent element; Idempotent operator; Idempotent map
Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of places in abstract algebra (in particular, in the theory of projectors and closure operators) and functional programming (in which it is connected to the property of referential transparency).
idempotent         
  • A typical crosswalk button is an example of an idempotent system
PROPERTY OF CERTAIN OPERATIONS IN MATHEMATICS AND COMPUTER SCIENCE, THAT CAN BE APPLIED MULTIPLE TIMES WITHOUT CHANGING THE RESULT BEYOND THE INITIAL APPLICATION
Idempotent function; Idempotency; Idempotence (computer science); Idempotent; Idempotent (software); Indempotency; Indempotent; Idempotent element; Idempotent operator; Idempotent map
[???d?m'p??t(?)nt, ??'d?mp?t(?)nt]
¦ noun Mathematics an element of a set which is unchanged in value when operated on by itself.
Origin
C19: from L. idem 'same' + potent1.

Wikipedia

Karoubi envelope

In mathematics the Karoubi envelope (or Cauchy completion or idempotent completion) of a category C is a classification of the idempotents of C, by means of an auxiliary category. Taking the Karoubi envelope of a preadditive category gives a pseudo-abelian category, hence the construction is sometimes called the pseudo-abelian completion. It is named for the French mathematician Max Karoubi.

Given a category C, an idempotent of C is an endomorphism

e : A A {\displaystyle e:A\rightarrow A}

with

e e = e {\displaystyle e\circ e=e} .

An idempotent e: AA is said to split if there is an object B and morphisms f: AB, g : BA such that e = g f and 1B = f g.

The Karoubi envelope of C, sometimes written Split(C), is the category whose objects are pairs of the form (A, e) where A is an object of C and e : A A {\displaystyle e:A\rightarrow A} is an idempotent of C, and whose morphisms are the triples

( e , f , e ) : ( A , e ) ( A , e ) {\displaystyle (e,f,e^{\prime }):(A,e)\rightarrow (A^{\prime },e^{\prime })}

where f : A A {\displaystyle f:A\rightarrow A^{\prime }} is a morphism of C satisfying e f = f = f e {\displaystyle e^{\prime }\circ f=f=f\circ e} (or equivalently f = e f e {\displaystyle f=e'\circ f\circ e} ).

Composition in Split(C) is as in C, but the identity morphism on ( A , e ) {\displaystyle (A,e)} in Split(C) is ( e , e , e ) {\displaystyle (e,e,e)} , rather than the identity on A {\displaystyle A} .

The category C embeds fully and faithfully in Split(C). In Split(C) every idempotent splits, and Split(C) is the universal category with this property. The Karoubi envelope of a category C can therefore be considered as the "completion" of C which splits idempotents.

The Karoubi envelope of a category C can equivalently be defined as the full subcategory of C ^ {\displaystyle {\hat {\mathbf {C} }}} (the presheaves over C) of retracts of representable functors. The category of presheaves on C is equivalent to the category of presheaves on Split(C).